

Coffee Break Python

50 Workouts to Kickstart Your
Rapid Code Understanding in

Python
Christian Mayer

September 2018

A puzzle a day to learn,
code, and play.

i

Contents

Contents ii

1 Introduction 1

2 A Case for Puzzle-based Learn-
ing 7
2.1 Overcome the Knowledge Gap . 9
2.2 Embrace the Eureka Moment . 12

ii

CONTENTS iii

2.3 Divide and Conquer 13
2.4 Improve From Immediate Feed-

back 16
2.5 Measure Your Skills 18
2.6 Individualized Learning 22
2.7 Small is Beautiful 24
2.8 Active Beats Passive Learning . 28
2.9 Make Code a First-class Citizen 32
2.10 What You See is All There is . 35

3 The Elo Rating for Python 39
3.1 How to Use This Book 43
3.2 The Ideal Code Puzzle 44
3.3 How to Exploit the Power of

Habits? 45
3.4 How to Test and Train Your

Skills? 47
3.5 What Can This Book Do For

You? 53

iv CONTENTS

4 A Quick Overview of the Python
Language 61
4.1 Keywords 62
4.2 Basic Data Types 66
4.3 Complex Data Types 70
4.4 Classes 75
4.5 Functions and Tricks 79

5 Fifty Puzzles 83
5.1 Hello World 85
5.2 Variables & Float Division . . . 88
5.3 Basic Arithmetic 91
5.4 Comments and Strings 94
5.5 Index and Concatenate Strings 98
5.6 List Indexing 102
5.7 Slicing in Strings 105
5.8 Integer Division 109
5.9 String Manipulation Operators 112
5.10 Implicit String Concatenation . 114
5.11 Sum and Range Functions . . . 117

CONTENTS v

5.12 Append Function for Lists . . . 120
5.13 Overshoot Slicing 122
5.14 Modulo Operator 124
5.15 Branching 127
5.16 Negative Indices 131
5.17 The For Loop 134
5.18 Functions and Naming 138
5.19 Concatenating Slices 142
5.20 Arbitrary Arguments 145
5.21 Indirect Recursion 148
5.22 String Slicing 152
5.23 Slice Assignment 155
5.24 Default Arguments 158
5.25 Slicing and the len() Function 162
5.26 Nested Lists 165
5.27 Clearing Sublists 168
5.28 The Fibonacci Series 170
5.29 Continue and Modulo 174
5.30 Indexing and Range 177
5.31 Matrix Search 181

vi CONTENTS

5.32 Max Profit 187
5.33 Bubble Sort Algorithm 191
5.34 Joining Strings 195
5.35 Arithmetic Calculations 198
5.36 Binary Search 201
5.37 Modifying Lists in Loops . . . 205
5.38 The Lambda Function 209
5.39 Multi-line and New-line 213
5.40 Escaping 216
5.41 Fibonacci 220
5.42 Quicksort 224
5.43 Unpacking kwargs 229
5.44 Infinity 233
5.45 Graph Traversal 235
5.46 Lexicographical Sorting 241
5.47 Chaining of Set Operations . . 244
5.48 Basic Set Operations 248
5.49 Unicode Encryption 252
5.50 The Guess and Check Framework256

CONTENTS vii

6 Final Remarks 261

1

Introduction

The great code masters—Knuth, Torvalds, and
Gates—share one character trait: the ambi-
tion to learn. If you are reading this book,
you are an aspiring coder and you seek ways to
advance your coding skills. You already have
some experience in writing code, but you feel
that there is a lot to be learned before you be-
come a master coder. You want to read and

1

2 CHAPTER 1. INTRODUCTION

understand code better. You want to chal-
lenge the status quo that some of your peers
understand code faster than you. Or you are
already proficient with another programming
language like Java or C++ but want to learn
Python to become more valuable to the mar-
ket place. Either way, you have already proven
your ambition to learn and, therefore, this
book is for you. To join the league of the
great code masters, you only have to do one
thing: stay in the game.

The main driver for mastery is neither a
character trait, nor talent. Mastery comes
from intense, structured training. The author
Malcolm Gladwell formulated the famous rule
of 10,000 hours after collecting research from
various fields such as psychology and neuro-
logical science.1 The rule states that if you

1Malcolm Gladwell Outliers: The Story of Success

3

have average talent, you will reach mastery
in any discipline by investing approximately
10,000 hours of intense training. Bill Gates,
the founder of Microsoft, reached mastery at a
young age as a result of coding for more than
10,000 hours. He was committed and passion-
ate about coding and worked long nights to
develop his skills. He was anything but an
overnight success.

There is one thing that will empower you
to invest the 10,000 hours of hard, focused
work to reach mastery. What do you think it
is? As for the code masters, it’s your ambi-
tion to learn that will drive you through the
valleys of desperation on your path to mas-
tery: complex code, nasty bugs, and project
managers pushing tight deadlines. Nurturing
your ambition to learn will pay a rich stream
of dividends to you and your family as long as

4 CHAPTER 1. INTRODUCTION

you live. It will make you a respectable mem-
ber of the society providing unique value to
information technology, automation, and dig-
italization. Ultimately, it will give you strong
confidence. So keeping your ambition to learn
intact is the one thing you must place above
all else.

This book aims to be a stepping stone on
your path to becoming a Python master. It
helps you to learn faster by making use of
the established principles of good teaching.
It offers you ten to twenty hours of thorough
Python training using one of the most efficient
learning techniques, called practice testing.
Investing this time will kickstart your skills
to write, read, and understand Python source
code.

The idea is that you solve code puzzles
that start out simple but become more and

5

more complex as you read the book. In essence,
you play Python interpreter and compute the
output of a code snippet in your head. Then
you check whether you were right with your
guess—using feedback and explanations—to
adapt and improve your coding skills over time.
To make this idea a reality, I developed the on-
line coding academy Finxter.com. The next
section explains and motivates the advantages
of the Finxter method of puzzle-based learn-
ing.

2

A Case for Puzzle-based
Learning

Definition: A code puzzle is an
educative snippet of source code
that teaches a single computer sci-
ence concept by activating the learner’s
curiosity and involving them in the
learning process.

7

8
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

Before diving into practical puzzle solv-
ing, let us first study 10 reasons why puzzle-
based learning accelerates your learning speed
and improves retention of the learned mate-
rial. There is robust evidence in psychological
science for each of these reasons. Yet, none
of the existing coding books lift code puz-
zles to being first-class citizens. Instead, they
are mostly focused on one-directional teach-
ing. This book attempts to change that. In
brief, the 10 reasons for puzzle-based learning
are the following.

1. Overcome the Knowledge Gap (Section 2.1)

2. Embrace the Eureka Moment (Section 2.2)

3. Divide and Conquer (Section 2.3)

4. Improve From Immediate Feedback (Sec-
tion 2.4)

2.1. OVERCOME THE KNOWLEDGE
GAP 9

5. Measure Your Skills (Section 2.5)

6. Individualized Learning (Section 2.6)

7. Small is Beautiful (Section 2.7)

8. Active Beats Passive Learning (Section 2.8)

9. Make Source Code a First-class Citizen
(Section 2.9)

10. What You See is All There is (Section 2.10)

2.1 Overcome the
Knowledge Gap

The great teacher Socrates delivered complex
knowledge by asking a sequence of questions.
Each question built on answers to previous
questions provided by the student. This more

10
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

than 2400 year old teaching technique is still in
widespread use today. A good teacher opens a
gap between their knowledge and the learner’s.
The knowledge gap makes the learner realize
that they do not know the answer to a burn-
ing question. This creates a tension in the
learner’s mind. To close this gap, the learner
awaits the missing piece of knowledge from the
teacher. Better yet, the learner starts devel-
oping their own answers. The learner craves
knowledge.

Code puzzles open an immediate knowl-
edge gap. When looking at the code, you first
do not understand the meaning of the puzzle.
The puzzle’s semantics are hidden. But only
you can transform the unsolved puzzle into a
solved one. Look at this riddle: “What pulls
you down and never lets go?” Can you feel
the tension? Opening and closing a knowl-

2.1. OVERCOME THE KNOWLEDGE
GAP 11

edge gap is a very powerful method for effec-
tive learning.1

Bad teachers open a knowledge gap that
is too large. The learner feels frustrated be-
cause they cannot overcome the gap. Sup-
pose you are standing before a river that you
must cross. But you have not learned to swim,
yet. Now, consider two rivers. The first is
the Colorado River that carved out the Grand
Canyon—quite a gap. The second is Rat-
tlesnake Creek. The fact that you have never
heard of this river indicates that it is not too
big of an obstacle. Most likely, you will not
even attempt to swim through the big Col-
orado River. But you could swim over the
Rattlesnake if you stretch your abilities just
a little bit. You will focus, pep-talk yourself,
and overcome the obstacle. As a result, your

1The answer is Gravity.

12
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

swimming skills and your confidence will grow
a little bit.

Puzzles are like the Rattlesnake—they are
not too great a challenge. You must stretch
yourself to solve them, but you can do it, if
you go all-out.

Constantly feeling a small but non-trivial
knowledge gap creates a healthy learning en-
vironment. Stretch your limits, overcome the
knowledge gap, and become better—one puz-
zle at a time.

2.2 Embrace the
Eureka Moment

Humans are unique because of their ability to
learn. Fast and thorough learning has always
increased our chances of survival. Thus, evo-

2.3. DIVIDE AND CONQUER 13

lution created a brilliant biological reaction to
reinforce learning in your body. Your brain is
wired to seek new information; it is wired to
always process data, to always learn.

Did you ever feel the sudden burst of hap-
piness after experiencing a eureka moment?
Your brain releases endorphins, the moment
you close a knowledge gap. The instant grati-
fication from learning is highly addictive, but
this addiction makes you smarter. Solving a
puzzle gives your brain instant gratification.
Easy puzzles open small and hard puzzles open
large knowledge gaps. Overcome any of them
and learn in the process.

2.3 Divide and Conquer
Learning to code is a complex task. You must
learn a myriad of new concepts and language

14
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

features. Many aspiring coders are overwhelmed
by the complexity. They seek a clear path to
mastery.

People tend to prioritize specific activities
with clearly defined goals. If the path is not
clear, we tend to drift away toward more spe-
cific paths. Most aspiring coders think they
have a goal: becoming a better coder. Yet,
this is not a specific goal at all. So what is
a specific goal? Watching Game of Thrones
after dinner, Series 2 Episode 1 is as spe-
cific as it can be. Due to the specificity, watch-
ing Netflix is more powerful than the fuzzy
path of learning to code. Hence, watching
Netflix wins most of the time.

As any productivity expert will tell you:
break a big task or goal into a series of smaller
steps. Finishing each tiny step brings you one
step closer to your big goal. Divide and con-

2.3. DIVIDE AND CONQUER 15

quer makes you feel in control, pushing you
one step closer toward mastery. You want to
become a master coder? Break the big coding
skill into a list of sub-skills—understanding
language features, designing algorithms, read-
ing code—and then tackle each sub-skill one
at a time.

Code puzzles do this for you. They break
up the huge task of learning to code into a se-
ries of smaller learning units. The student ex-
periences laser focus on one learning task such
as recursion, the for loop, or keyword argu-
ments. Don’t worry if you do not understand
these concepts yet—after working through this
book, you will. A good code puzzle delivers
a single idea from the author’s into the stu-
dent’s head. You can digest one puzzle at a
time. Each puzzle is a step toward your big-
ger goal of mastering computer science. Keep

16
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

solving puzzles and you keep improving your
skills.

2.4 Improve From
Immediate
Feedback

As a child, you learned to walk by trial and
error—try, receive feedback, adapt, and re-
peat. Unconsciously, you will minimize neg-
ative and maximize positive feedback. You
avoid falling because it hurts, and you seek
the approval of your parents. But not only or-
ganic life benefits from the great learning tech-
nique of trial and error. In machine learning,
algorithms learn by guessing an output and
adapting their guesses based on their correct-
ness. To learn anything, you need feedback

2.4. IMPROVE FROM IMMEDIATE
FEEDBACK 17

such that you can adapt your actions.
However, an excellent learning environment

provides you not only with feedback but with
immediate feedback for your actions. In con-
trast, poor learning environments do not pro-
vide any feedback at all or only with a large
delay. Examples are activities with good short-
term and bad long-term effects such as smok-
ing, alcohol, or damaging the environment.
People cannot control these activities because
of the delayed feedback. If you were to slap
your friend each time he lights a cigarette—a
not overly drastic measure to safe his life—he
would quickly stop smoking. If you want to
learn fast, make sure that your environment
provides immediate feedback. Your brain will
find rules and patterns to maximize the rein-
forcement from the immediate feedback.

This book offers you an environment with

18
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

immediate feedback to make learning to code
easy and fast. Over time, your brain will ab-
sorb the meaning of a code snippet quicker
and with higher precision this way. Learning
this skill pushes you toward the top 10% of
all coders. There are other environments with
immediate feedback, like executing code and
checking correctness, but puzzle-based learn-
ing is the most direct one: Each puzzle edu-
cates with immediate feedback.

2.5 Measure Your Skills
You need to have a definite goal to be suc-
cessful. A definite goal is a powerful motiva-
tor and pushes you to stretch your skills con-
stantly. The more definite and concrete it is,
the stronger it becomes. Holding a definite
goal in your mind is the first and foremost

2.5. MEASURE YOUR SKILLS 19

step toward its physical manifestation. Your
beliefs bring your goal into reality.

Think about an experienced Python pro-
grammer you know, e.g., your nerdy colleague
or class mate. How good are their Python
skills compared to yours? On a scale from
your grandmother to Bill Gates, where is your
colleague and where are you? These questions
are difficult to answer because there is no sim-
ple way to measure the skill level of a pro-
grammer. This creates a severe problem for
your learning progress: the concept of being a
good programmer becomes fuzzy and diluted.
What you can’t measure, you can’t improve.
Not being able to measure your coding skills
diverts your focus from systematic improve-
ment. Your goal becomes less definite.

So what should be your definite goal when
learning a programming language? To an-

20
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

swer this, let us travel briefly to the world
of chess, which happens to provide an excel-
lent learning environment for aspiring play-
ers. Every player has an Elo rating number
that measures their skill level. You get an Elo
rating when playing against other players—
if you win, your Elo rating increases. Victo-
ries against stronger players lead to a higher
increase of the Elo rating. Every ambitious
chess player simply focuses on one thing: in-
creasing their Elo rating. The ones that man-
age to push their Elo rating very high, earn
grand master titles. They become respected
among chess players and in the outside world.

Every chess player dreams of being a grand-
master. The goal is as definite as it can be:
reaching an Elo of 2400 and master level (see
Section 3). Thus, chess is a great learning
environment—every player is always aware of

2.5. MEASURE YOUR SKILLS 21

their skill level. A player can measure how de-
cisions and habits impact their Elo number.
Do they improve when sleeping enough be-
fore important games? When training open-
ing variants? When solving chess puzzles?
What you can measure, you can improve.

The main idea of this book, and the associ-
ated learning app Finxter.com, is to trans-
fer this method of measuring skills from the
chess world to programming. Suppose you
want to learn Python. The Finxter website as-
signs you a rating number that measures your
coding skills. Every Python puzzle has a rat-
ing number as well, according to its difficulty
level. You ‘play’ against a puzzle at your diffi-
culty level: The puzzle and you will have more
or less the same Elo rating so that you can
enjoy personalized learning. If you solve the
puzzle, your Elo increases and the puzzle’s Elo

22
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

decreases. Otherwise, your Elo decreases and
the puzzle’s Elo increases. Hence, the Elo rat-
ings of the difficult puzzles increase over time.
But only learners with high Elo ratings will
see them. This self-organizing system ensures
that you are always challenged but not over-
whelmed, while you constantly receive feed-
back about how good your skills are in com-
parison with others. You always know exactly
where you stand on your path to mastery.

2.6 Individualized
Learning

The educational system today is built around
the idea of classes and courses. In these en-
vironments, all students consume the same
learning material from the same teacher ap-
plying the same teaching methods. This tradi-

2.6. INDIVIDUALIZED LEARNING 23

tional idea of classes and courses has a strong
foundation in our culture and social thinking
patterns. Yet, science proves again and again
the value of individualized learning. Individu-
alized learning tailors the content, pace, style,
and technology of teaching to the student’s
skills and interests. Of course, truly individ-
ualized learning has always required a lot of
teachers. But paying a high number of teach-
ers is expensive (at least in the short term) in
a non-digital environment.

In the digital era, many fundamental lim-
itations of our society begin to crack. Com-
pute servers and intelligent machines can pro-
vide individualized learning with ease. But
with changing limitations, we must adapt our
thinking as well. Machines will enable truly
individualized learning very soon; yet society
needs time to adapt to this trend.

24
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

Puzzle-based learning is a perfect example
of automated, individualized learning. The
ideal puzzle stretches the student’s abilities
and is neither boring nor overwhelming. Find-
ing the perfect learning material for each learner
is an important and challenging problem. Finx-
ter uses a simple but effective solution to solve
this problem: the Elo rating system. The
student solves puzzles at their individual skill
level. This book and the book’s web backend
Finxter pushes teaching toward individualized
learning.

2.7 Small is Beautiful
The 21st century has seen a rise in micro-
content. Microcontent is a short and acces-
sible piece of valuable information such as the
weather forecast, a news headline, or a cat

2.7. SMALL IS BEAUTIFUL 25

video. Social media giants like Facebook and
Twitter offer a stream of never-ending micro-
content. Microcontent is powerful because it
satisfies the desire for shallow entertainment.
Microcontent has many benefits: the consumer
stays engaged and interested, and it is easily
digestible in a short time. Each piece of mi-
crocontent pushes your knowledge horizon a
bit further. Today, millions of people are ad-
dicted to microcontent.

However, this addiction will also become a
problem to these millions. The computer sci-
ence professor Cal Newport shows in his book
Deep Work that modern society values deep
work more than shallow work. Deep work is
a high-value activity that needs intense focus
and skill. Examples of deep work are pro-
gramming, writing, or researching. Contrar-
ily, shallow work is every low-value activity

26
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

that can be done by everybody (e.g., posting
the cat videos to social media). The demand
for deep work grew with the rise of the in-
formation society; at the same time, the sup-
ply stayed constant or decreased, e.g., because
of the addictiveness of shallow social media.
People that see and understand this trend can
benefit tremendously. In a free market, the
prices of scarce and demanded resources rise.
Because of this, surgeons, lawyers, and soft-
ware developers earn $100,000 per year and
more. Their work cannot easily be replaced
or outsourced to unskilled workers. If you are
able to do deep work, to focus your atten-
tion on a challenging problem, society pays
you generously.

What if we could marry the concepts of mi-
crocontent and deep work? This is the promise
of puzzle-based learning. Finxter offers a stream

2.7. SMALL IS BEAUTIFUL 27

of self-contained microcontent in the form of
hundreds of small code puzzles. But instead of
just being unrelated microcontent, each puz-
zle is a tiny stimulus that teaches a coding
concept or language feature. Hence, each puz-
zle pushes your knowledge in the same direc-
tion.

Puzzle-based learning breaks the bold goal,
i.e., reach the mastery level in Python, into
tiny actionable steps: solve and understand
one code puzzle per day. While solving the
smaller tasks, you progress toward your larger
goal. You take one step at a time to eventu-
ally reach the mastery level. A clear path to
success.

28
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

2.8 Active Beats
Passive Learning

Robust scientific evidence shows that active
learning doubles students’ learning performance.
In a study on that matter, test scores of ac-
tive learners improve by more than one grade
compared to their passive learning fellow stu-
dents.2 Not using active learning techniques
wastes your time and hinders you in reaching
your full potential in any area of life. Switch-
ing to active learning is a simple tweak that
will instantly improve your performance when
learning any subject.

How does active learning work? Active
learning requires the student to interact with
the material, rather than simply consuming

2 https://en.wikipedia.org/wiki/Active_
learning#Research_evidence

2.8. ACTIVE BEATS PASSIVE
LEARNING 29

it. It is student- rather than teacher-centric.
Great active learning techniques are asking
and answering questions, self-testing, teach-
ing, and summarizing. A popular study shows
that one of the best learning techniques is
practice testing.3 In this learning technique,
you test your knowledge even if you have not
learned everything yet. Rather than learning
by doing, it’s learning by testing.

However, the study argues that students
must feel safe during these tests. Therefore,
the tests must be low-stake, i.e., students have
little to lose. After the test, students get feed-
back about the correctness of the tests. The
study shows that practice testing boosts long-
term retention of the material by almost a fac-
tor of 10. As it turns out, solving a daily code

3 http://journals.sagepub.com/doi/abs/10.1177/
1529100612453266

30
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

puzzle is not just another learning technique—
it is one of the best.

Although active learning is twice as effec-
tive, most books focus on passive learning.
The author delivers information; the student
passively consumes the information. Some
programming books include active learning el-
ements by adding tests or by asking the reader
to try out the code examples. Yet, I always
found this impracticable while reading on the
train, on the bus, or in bed. But if these
active elements drop out, learning becomes
100% passive again.

Fixing this mismatch between research and
common practice drove me to write this book
about puzzle-based learning. In contrast to
other books, this book makes active learning
a first-class citizen. Solving code puzzles is an
inherent active learning technique. You must

2.8. ACTIVE BEATS PASSIVE
LEARNING 31

develop the solution yourself, in every single
puzzle. The teacher is as much in the back-
ground as possible—they only explain the cor-
rect solution if you couldn’t work it out your-
self. But before telling you the correct so-
lution, your knowledge gap is already ripped
wide open. Thus, you are mentally ready to
digest new material.

To drive this point home, let me empha-
size this argument again: puzzle-based learn-
ing is a variant of the active learning technique
named practice testing. Practice testing is sci-
entifically proven to teach you more in less
time.

32
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

2.9 Make Code a
First-class Citizen

Each grandmaster of chess has spent tens of
thousands of hours looking into a near infi-
nite number of chess positions. Over time,
they develop a powerful skill: the intuition
of the expert. When presented with a new
position, they are able to name a small num-
ber of strong candidate moves within seconds.
They operate on a higher level than normal
people. For normal people, the position of
a single chess piece is one chunk of informa-
tion. Hence they can only memorize the po-
sition of about six chess pieces. But chess
grand masters view a whole position or a se-
quence of moves as a single chunk of infor-
mation. The extensive training and experi-
ence has burned strong patterns into their bi-

2.9. MAKE CODE A FIRST-CLASS
CITIZEN 33

ological neural networks. Their brain is able
to hold much more information—a result of
the good learning environment they have put
themselves in.

What are some principles of good learn-
ing? Let us dive into another example of a
great learning environment—this time for ma-
chines. Recently, Google’s artificial intelligence
AlphaZero has proven to be the best chess
playing entity in the world. AlphaZero uses
artificial neural networks. An artificial neu-
ral network is the digital twin of the human
brain with artificial neurons and synapses. It
learns by example much like a grandmaster of
chess. It presents itself a position, predicts a
move, and adapts its prediction to the extent
the prediction was incorrect.

Chess and machine learning exemplify prin-
ciples of good learning that are valid in any

34
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

field you want to master. First, transform
the object to learn into a stimulus that you
present to yourself over and over again. In
chess, study as many chess positions as you
can. In math, make reading mathematical
papers with theorems and proofs a habit. In
coding, expose yourself to lots of code. Sec-
ond, seek feedback. Immediate feedback is
better than delayed feedback. However, de-
layed feedback is still much better than no
feedback at all. Third, take your time to learn
and understand thoroughly. Although it is
possible to learn on-the-go, you will cut cor-
ners. The person who prepares beforehand
always has an edge. In the world of cod-
ing, some people recommend learning by cod-
ing practical projects and doing nothing more.
Chess grandmasters, sports stars, and intelli-
gent machines do not follow this advice. They
learn by practicing isolated stimuli again and

2.10. WHAT YOU SEE IS ALL THERE IS35

again until they have mastered them. Then
they move on to more complex stimuli.

Puzzle-based learning is code-centric. You
will find yourself staring at the code for a long
time until the insight strikes. This creates new
synapses in your brain that help you under-
stand, write, and read code fast. Placing code
in the center of the whole learning process cre-
ates an environment in which you will develop
the powerful intuition of the expert. Maxi-
mize the learning time you spend looking
at code rather than at other stimuli.

2.10 What You See is
All There is

My professor of theoretical computer science
used to tell us that if we only stare long enough

36
CHAPTER 2. A CASE FOR

PUZZLE-BASED LEARNING

at a proof, the meaning will transfer into our
brains by osmosis. This fosters deep thinking,
a state of mind where learning is more pro-
ductive. In my experience, his staring method
works—but only if the proof contains every-
thing you need to know to solve it. It must be
self-contained.

A good code puzzle beyond the most basic
level is self-contained. You can solve it purely
by staring at it until your mind follows your
eyes—your mind develops a solution based on
rational thinking. There is no need to look
things up. If you are a great programmer,
you will find the solution quickly. If not, it
will take more time but you can still find the
solution—it is just more challenging.

My gold standard was to design each puz-
zle such that it is mostly self-contained. How-
ever, to deliver on the book’s promise of train-

2.10. WHAT YOU SEE IS ALL THERE IS37

ing your understanding of the Python basics,
puzzles must introduce syntactical language
elements as well. But even if the syntax in a
puzzle challenges you, you should still develop
your own solutions based on your imperfect
knowledge. This probabilistic thinking opens
the knowledge gap and prepares your brain to
receive and digest the explained solution. Af-
ter all, your goal is long-term retention of the
material.

3

The Elo Rating for Python

Pick any sport you always loved to do. How
good are you compared to others? The Elo
rating answers this question with surprising
accuracy. It assigns a number to each player
that represents their skill in the sport. The
higher the Elo number, the better the player.

Let us give a small example of how the

39

40
CHAPTER 3. THE ELO RATING FOR

PYTHON

Elo rating works in chess. Alice is a strong
player with an Elo rating of 2000 while Bob
is an intermediate player with Elo 1500. Say
Alice and Bob play a chess game against each
other. Who will win the game? As Alice is the
stronger player, she should win the game. The
Elo rating system rewards players for good
and punishes for bad results: the better the
result, the higher the reward. For Bob, a win,
or even a draw, would be a very good out-
come of the game. For Alice, the only satisfy-
ing result is a win. Winning against a weaker
player is less rewarding than winning against a
stronger player. Thus, the Elo rating system
rewards Alice with only +3 Elo points for a
win. A loss costs her -37 Elo points, and even
a draw costs her -17 points. Playing against a
weaker player is risky for her because she has
much to lose but little to win.

41

The idea of Finxter is to view your learning
as a series of games between two players: you
and the Python puzzle. Both players have an
Elo rating. Your rating measures your current
skills and the puzzle’s rating reflects the diffi-
culty. On our website finxter.com, a puzzle
plays against hundreds of Finxter users. Over
time, the puzzle’s Elo rating converges to its
true difficulty level.

Table 3.1 shows the ranks for each Elo rat-
ing level. The table is an opportunity for you
to estimate your Python skill level. In the fol-
lowing, I describe how you can use this book
to test your Python skills.

42
CHAPTER 3. THE ELO RATING FOR

PYTHON

Elo rating Rank
2500 World Class

2400-2500 Grandmaster
2300-2400 International Master
2200-2300 Master
2100-2200 National Master
2000-2100 Master Candidate
1900-2000 Authority
1800-1900 Professional
1700-1800 Expert
1600-1700 Experienced Intermediate
1500-1600 Intermediate
1400-1500 Experienced Learner
1300-1400 Learner
1200-1300 Scholar
1100-1200 Autodidact
1000-1100 Beginner
0-1000 Basic Knowledge

Table 3.1: Elo ratings and skill levels.

3.1. HOW TO USE THIS BOOK 43

3.1 How to Use This
Book

This book provides a series of 50 code puz-
zles plus explanations to test and train your
Python skills. The puzzles start from beginner
level and become gradually harder to reach
intermediate level. A follow-up book covers
intermediate to expert level. This book is
perfect for users between the beginner and
the intermediate level. Yet, even expert users
can improve their speed of code understand-
ing. No matter your current skill level, you
will benefit from puzzle-based learning. It will
deepen and accelerate your understanding of
basic coding patterns.

44
CHAPTER 3. THE ELO RATING FOR

PYTHON

3.2 The Ideal Code
Puzzle

The ideal code puzzle possesses each of the
following six properties. The puzzle

1. has a surprising result;

2. provides new information;

3. is relevant and practical;

4. delivers one main idea;

5. can be solved by thinking alone; and

6. is challenging but not overwhelming.

This was the gold standard for all the puz-
zles created in this book. I did my best to
adhere to this standard.

3.3. HOW TO EXPLOIT THE POWER
OF HABITS? 45

3.3 How to Exploit the
Power of Habits?

You are what you repeatedly do. Your habits
determine your success in life and in any spe-
cific area such as coding. Creating a pow-
erful learning habit can take you a long way
on your journey to becoming a code master.
Charles Duhigg, a leading expert in the psy-
chology of habits, shows that each habit fol-
lows a simple process called the habit loop.
This process consists of three steps: trigger,
routine, and reward.1 First, the trigger starts
the process. A trigger can be anything such
as drinking your morning coffee. Second, the
routine is an action you take when presented
with the trigger. An example routine is to

1 Charles Duhigg, The Power of Habit: Why We Do What
We Do in Life and Business.

46
CHAPTER 3. THE ELO RATING FOR

PYTHON

solve a code puzzle. Each routine is in an-
ticipation of a reward. Third, the reward is
anything that makes you feel good. When
you overcome a knowledge gap, your brain re-
leases endorphins—a powerful reward. Over
time, your habit becomes stronger—you seek
the reward.

Habits with strong manifestations in these
three steps are life-changing. Invest 10% of
your paycheck every month and you will be
rich one day. Get used to the habit of solv-
ing one Python puzzle a day as you drink your
morning coffee—and enjoy the endorphin dose
in your brain. Implementing this Finxter loop
in your day sets up an automatic progress to-
ward you becoming a better and better coder.
As soon as you have established the Finxter
loop as a strong habit, it will cost you neither a
lot of time, nor energy. This is self-engineering

3.4. HOW TO TEST AND TRAIN YOUR
SKILLS? 47

at its finest level.

3.4 How to Test and
Train Your Skills?

I recommend solving at least one or two code
puzzles every day, e.g., as you drink your morn-
ing coffee. Then you spend the rest of your
learning time on real projects that matter to
you. The puzzles guarantee that your skills
improve over time and the real project brings
you results.

If you want to test your Python skills, use
the following simple method.

1. Track your individual Elo rating as you
read the book and solve the code puz-
zles. Simply write your current Elo rat-
ing into the book. Start with an initial

48
CHAPTER 3. THE ELO RATING FOR

PYTHON

rating of 1000 if you are a beginner, 1500
if you are an intermediate, and 2000 if
you are an advanced Python program-
mer. Of course, if you already have an
online rating on finxter.com, start-
ing with this rating would be the most
precise option. Figure 3.4 shows five
different examples of how your Elo will
change while working through the book.
Two factors impact the final rating: how
you select your initial rating and how
good you perform (the latter being more
important).

2. If your solution is correct, add the Elo
points according to the table given with
the puzzle. Otherwise, subtract the given
Elo points from your current Elo num-
ber.

3.4. HOW TO TEST AND TRAIN YOUR
SKILLS? 49

0 10 20 30 40 50
Number of Solved Puzzles

0

500

1000

1500

2000

2500

Yo
ur

 E
lo

Grand master

Beginner, 50% correct
Intermediate, 50% correct
Advanced, 50% correct

Beginner, 0% correct
Advanced, 100% correct

Figure 3.1: This plot exemplifies how your Elo
rating may change while you work through the
50 code puzzles. There are three important
observations. First, no matter how you select
your initial Elo, you will converge to your true
skill level as you solve more puzzles. Second,
you will lose Elo points faster when you have
a higher Elo number. Third, your final Elo
will be anywhere between 200 and 2450 after
working through this book.

50
CHAPTER 3. THE ELO RATING FOR

PYTHON

Solve the puzzles in a sequential manner
because they build upon each other. Advanced
readers can also solve puzzles in the sequence
they wish—the Elo rating will work as well.
The Elo rating will become more accurate as
you solve more and more puzzles. Although
only an estimate, your Elo rating is an objec-
tive measure to compare your skills with the
skills of others. Several Finxter users have re-
ported that the rating is surprisingly accurate.

Use the following training plan to develop
a strong learning habit with puzzle-based learn-
ing.

1. Select a daily trigger after which you
solve code puzzles for 10 minutes. For
example, decide on your Coffee Break
Python, or even solve code puzzles as
you brush your teeth or sit on the train
to work, university, or school.

3.4. HOW TO TEST AND TRAIN YOUR
SKILLS? 51

2. Scan over the puzzle in a first quick pass
and ask yourself: what is the unique idea
of this puzzle?

3. Dive deeply into the code. Try to under-
stand the purpose of each symbol, even
if it seems trivial at first. Avoid being
shallow and lazy. Instead, solve each
puzzle thoroughly and take your time.
It’s counterintuitive: To learn faster in
less time, you must stay calm and take
your time and allow yourself to dig deep.
There is no shortcut.

4. Make sure you carry a pen with you
and write your solution into the book.
This ensures that you stay objective—
we all have the tendency to fake our-
selves. Active learning is a central idea
of this book.

52
CHAPTER 3. THE ELO RATING FOR

PYTHON

5. Look up the solution and read the expla-
nation with care. Do you understand ev-
ery aspect of the code? Write open ques-
tions down and look them up later, or
send them to me (info@finxter.com).
I will do everything I can to come up
with a good explanation.

6. Only if your solution was 100% correct—
including whitespaces, data types, and
formatting of the output—you get Elo
points for this puzzle. Otherwise you
should count it as a wrong solution and
swallow the negative Elo points. The
reason for this strict rule is that this is
the best way to train yourself to solve
the puzzles thoroughly.

As you follow this simple training plan,
your skill to see through source code quickly

3.5. WHAT CAN THIS BOOK DO FOR
YOU? 53

will improve. Over the long haul, this will
have a huge impact on your career, income,
and work satisfaction. You do not have to
invest much time because the training plan
requires only 10–20 minutes per day. But you
must be persistent in your training effort. If
you get off track, get right back on track the
next day. When you run out of code puzzles,
feel free to checkout Finxter.com with more
than 300 hand-crafted code puzzles. I regu-
larly publish new code puzzles on the website
as well.

3.5 What Can This
Book Do For You?

Before we dive into puzzle solving, let me an-
ticipate and address possible misconceptions
about this book.

54
CHAPTER 3. THE ELO RATING FOR

PYTHON

The puzzles are too easy/too hard. This
book is for you if you already have some expe-
rience in coding. Your skill level in the Python
programming language ranges from beginner
to intermediate. Even so, if you are already
an advanced coder, this book is for you as
well—if you read it in a different way. Mea-
sure the time you need to solve the puzzles
and limit your solution time to only 10–20 sec-
onds. This introduces an additional challenge
for solving the puzzles: time pressure. Solv-
ing puzzles under time pressure sharpens your
rapid code understanding skills even more. Even-
tually, you will feel that your coding intuition
has improved. If the puzzles are too hard,
great. Your knowledge gap must be open be-
fore you can effectively absorb information.
Just take your time to thoroughly understand
every bit of new information. Study the cheat
sheets in Chapter 4 properly.

3.5. WHAT CAN THIS BOOK DO FOR
YOU? 55

This book is not conventionally struc-
tured by topic. Correct, the puzzles are sorted
by Elo and not structured by topic. Puzzles
with a small Elo rating are easier and more
fundamental. Puzzles with a higher Elo rat-
ing are harder. To solve them, you need to
combine the fundamental learnings from the
easier puzzles. Ordering puzzles by difficulty
has many advantages. You can solve puzzles
in your skill level. As you are getting better,
the puzzles become harder. Finally, ordering
by complexity allows us to combine many top-
ics in a single puzzle. For example, a Python
one-liner may use two topics: list comprehen-
sion and lambda functions.

Learning to code is best done via coding
on projects. This is only part of the truth.
Yes, you can improve your skills to a certain
level by diving into practical projects. But

56
CHAPTER 3. THE ELO RATING FOR

PYTHON

as in every other discipline, your skills will
bounce quickly against your personal ceiling.
Your ceiling is the maximum skill level you are
able to reach, given your current limitations.
These limitations come from a lack of thor-
ough understanding of basic knowledge. You
cannot understand higher-level knowledge prop-
erly without understanding the basic building
blocks. Have you ever used machine learning
techniques in your work? Without theoretical
foundations, you are doomed. Theory pushes
your ceiling upwards and gets rid of the limi-
tations that hold you back.

Abraham Lincoln said: “Give me six hours
to chop down a tree and I will spend the
first four sharpening the axe.” Do not fool
yourself into the belief that just doing it is the
most effective road to reach any goal. You
must constantly sharpen the saw to be suc-

3.5. WHAT CAN THIS BOOK DO FOR
YOU? 57

cessful in any discipline. Learning to code is
best done via practical coding and investing
time into your personal growth. Millions of
computer scientists enjoyed an academic ed-
ucation. They know that solving hundreds
or thousands of toy examples in their studies
built a strong and thorough foundation.

How am I supposed to solve this puz-
zle if I do not know the meaning of this
specific Python language feature? Guess it!
Python is an intuitive language. Think about
potential meanings. Solve the puzzle for each
of them—a good exercise for your brain. The
more you work on the puzzle, even with imper-
fect knowledge, the better you prepare your
brain to absorb the puzzle’s explanation.

Why should I buy the book when puzzles
are available for free at Finxter. com? My
goal is to remove barriers to learning Python.

58
CHAPTER 3. THE ELO RATING FOR

PYTHON

Thus, all puzzles are available for free online.
This book is based on the puzzles available at
Finxter, but it extends them with more de-
tailed and structured information. Neverthe-
less, if you don’t like reading books, feel free
to check out the website.

Anyway, why do some people thrive in their
fields and become valued experts while oth-
ers stagnate? They read books in their field.
They increase their value to the marketplace
by feeding themselves with valuable informa-
tion. Over time, they have a huge advantage
over their peers. They get the opportunities to
develop themselves even further. They enjoy
their jobs and have much higher work satis-
faction and life quality. Belonging to the top
ten percent in your field yields hundreds of
thousands of dollars during your career. How-
ever, there is price you have to pay to un-

3.5. WHAT CAN THIS BOOK DO FOR
YOU? 59

lock the gates to this world: you have to in-
vest in books and your own personal develop-
ment. The more time and money you spend
on books, the more valuable you become to
the marketplace!

The Elo-based rating is not accurate. Sev-
eral finxters find the rating helpful, fair, and
accurate in comparison to others. It provides
a good indication of where one stands in the
field of Python coders. If you feel the rating
is not accurate, ask yourself whether you are
objective. If you think you are, please let me
know so that I have a chance to improve this
book and the Finxter back-end.

4

A Quick Overview of the
Python Language

Before diving into the puzzles, work through
the following five cheat sheets. They contain
80% of the Python language features in 20%
of the time. So they are definitely worth your
time investment.

Learn them thoroughly. Try to understand

61

62
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE

every single line of code. And catapult your
skills to the next level. Most Python coders
neglect to invest enough time into a thorough
and comprehensive understanding of the ba-
sics such as language features, data types, and
language tricks. Be different and absorb the
examples in each of the cheat sheets. Open
up your path to become a master coder and
join the top ten percent of coders.

You can download all five cheat sheets as
concise PDFs and post them to your wall un-
til you know them by heart (https://blog.
finxter.com/python-cheat-sheet/).

4.1 Keywords
All programming languages reserve certain words
to have a special meaning. These words are
called keywords. With keywords, the pro-

4.1. KEYWORDS 63

grammer can issue commands to the compiler
or interpreter. They let you tell the computer
what to do. Without keywords, the computer
could not make sense from the seemingly ran-
dom text in your code file. Note that as key-
words are reserved words, you cannot use them
as variable names.

The most important Python keywords are
the following.

False True and or
not break continue class
def if elif else
for while in is
None lambda return

The next cheat sheet introduces the most
important keywords in Python. In each row,
you can find the keyword itself, a short de-
scription, and an example of its usage.

64
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE

Keyword Description Code example
False,
True

Data values from the data
type Boolean

False == (1 > 2)
True == (2 > 1)

and, or,
not

Logical operators:
(x and y) → both x and y
must be True
(x or y) → either x or y
must be True
(not x) → x must be false

x, y = True, False
(x or y) == True

True

(x and y) == False

True

(not y) == True

True

break Ends loop prematurely while(True):
 break # no infinite loop
print("hello world")

continue Finishes current loop
iteration

while(True):
 continue
 print("43") # dead code

class

def

Defines a new class → a
real-world concept (object
oriented programming)

Defines a new function or
class method. For latter, first
parameter self points to
the class object. When
calling class method, first
parameter is implicit.

class Beer:

 def __init__(self):
 self.content = 1.0

 def drink(self):
 self.content = 0.0

constructor creates class

becks = Beer()

empty beer bottle

becks.drink()

if,
elif,

Conditional program
execution: program starts

x = int(input("your val: "))
if x > 3: print("Big")

4.1. KEYWORDS 65

else with “if” branch, tries “elif”
branches, and finishes with
“else” branch (until one
evaluates to True).

elif x == 3: print("Medium")
else: print("Small")

for,
while

For loop

declaration

for i in [0,1,2]:
 print(i)

While loop - same

semantics

j = 0
while j < 3:
 print(j)

 j = j + 1

in Checks whether element is
in sequence

42 in [2, 39, 42] # True

is Checks whether both
elements point to the same
object

y = x = 3

x is y # True
[3] is [3] # False

None Empty value constant def f():
 x = 2
f() is None # True

lambda Function with no name
(anonymous)

(lambda x: x + 3)(3) #
returns 6

return Terminates function
execution and passes the
execution flow to the caller.
An optional value after the
return keyword specifies the
result.

def incrementor(x):
 return x + 1
incrementor(4) # returns 5

66
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE

4.2 Basic Data Types

Many programmers know basic data types as
primitive data types. They provide the prim-
itives on which higher-level concepts are built.
A house is built from bricks. Likewise, a com-
plex data type is built from basic data types.
I introduce basic data types in the next cheat
sheet and complex data types in Section 4.3.

Specifically, the next cheat sheet explains
the three most important (classes of) basic
data types in Python. First, the boolean data
type encodes truth values. For example, the
expression 42 > 3 evaluates to True and 1 ∈
{2, 4, 6} evaluates to False. Second, the nu-
merical types integer, float, and complex num-
bers encode integer values, floating point val-
ues, and complex values, respectively. For ex-
ample, 41 is an integer value, 41.99 is a float

4.2. BASIC DATA TYPES 67

value, and 41.999 + 0.1 ∗ i is a complex value
(the first part of the equation being the real
number and the second the imaginary num-
ber). Third, the string data type encodes
textual data. An example of a string value
is the Shakespeare quote ‘Give every man
thy ear, but few thy voice’.

68
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE

Data Type + Description Example

Boolean
The Boolean data type is a
truth value, either True or
False.

These are important Boolean
operators ordered by priority
(from highest to lowest):
not x →
“if x is False, then x, else y”

x and y →
“if x is False, then x, else y”

x or y →
“if x is False, then y, else x”

x, y = True, False
print(x and not y) # True
print(not x and y or x) # True

All of those evaluate to False

if (None or 0 or 0.0 or '' or []
 or {} or set()):
 print("Dead code")

All of those evaluate to True

if (1 < 2 and 3 > 2 and 2 >=2
 and 1 == 1 and 1 != 0):
 print("True")

Integer
An integer is a positive or
negative number without
floating point (e.g. 3).

Float
A float is a positive or
negative number with floating
point precision (e.g.
3.14159265359).

The ‘//’ operator performs
integer division. The result is
an integer value that is
rounded towards the smaller
integer number (e.g. 3 // 2
== 1).

Arithmetic Operations

x, y = 3, 2
print(x + y) # = 5
print(x - y) # = 1
print(x * y) # = 6
print(x / y) # = 1.5
print(x // y) # = 1
print(x % y) # = 1s
print(-x) # = -3
print(abs(-x)) # = 3
print(int(3.9)) # = 3
print(float(3)) # = 3.0
print(x ** y) # = 9

4.2. BASIC DATA TYPES 69

String
Python Strings are sequences
of characters. They are
immutable which means that
you can not alter the
characters without creating a
new string.

The four main ways to create
strings are the following.

1. Single quotes
'Yes'

2. Double quotes
"Yes"

3. Triple quotes (multi-line)
"""Yes

We Can"""

4. String method
str(5) == '5' # True
5. Concatenation
"Ma" + "hatma" #
'Mahatma'

These are whitespace
characters in strings.

● Newline \n
● Space \s
● Tab \t

Indexing & Slicing

s = "The youngest pope was 11 years
old"

print(s[0]) # 'T'
print(s[1:3]) # 'he'
print(s[-3:-1]) # 'ol'
print(s[-3:]) # 'old'
x = s.split() # string array
print(x[-3] + " " + x[-1] + " " +
x[2] + "s") # '11 old popes'

Key String Methods

y = " This is lazy\t\n"
print(y.strip()) # 'This is lazy'
print("DrDre".lower()) # 'drdre'
print("stop".upper()) # 'STOP'
s = "smartphone"
print(s.startswith("smart")) # True
print(s.endswith("phone")) # True
print("another".find("other")) # 2
print("cheat".replace("ch", "m"))
'meat'

print(','.join(["F", "B", "I"]))
'F,B,I'

print(len("Rumpelstiltskin")) # 15
print("ear" in "earth") # True

70
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE

4.3 Complex Data
Types

In the previous section, you learned about ba-
sic data types. These are the building blocks
for complex data types. Think of complex
data types as containers—each holding a mul-
titude of (potentially different) data types.

Specifically, the complex data types in this
cheat sheet are lists, sets, and dictionaries. A
list is an ordered sequence of data values (that
can be either basic or complex data types).
An example for such an ordered sequence is
the list of all US presidents: ['Washington',
'Adams', 'Jefferson', ..., 'Obama', 'Trump'].
In contrast, a set is an unordered sequence of
data values: { 'Trump', 'Washington', 'Jefferson',
..., 'Obama'}.

Expressing the US presidents as a set loses

4.3. COMPLEX DATA TYPES 71

all ordering information—it’s not a sequence
anymore. But sets do have an advantage over
lists. Retrieving information about particular
data values in the set is much faster. For in-
stance, checking whether the string 'Obama'
is in the set of US presidents is blazingly fast
even for large sets. I provide the most impor-
tant methods and ideas in the following cheat
sheet.

72
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE
Complex Data Type +
Description

Example

List
A container data type
that stores a sequence of
elements. Unlike strings,
lists are mutable:
modification possible.

l = [1, 2, 2]
print(len(l)) # 3

Adding elements
to a list with append,
insert, or list
concatenation. The
append operation is
fastest.

[1, 2, 2].append(4) # [1, 2, 2, 4]
[1, 2, 4].insert(2,2) # [1, 2, 2, 4]
[1, 2, 2] + [4] # [1, 2, 2, 4]

Removing elements
is slower (find it first).

[1, 2, 2, 4].remove(1) # [2, 2, 4]

Reversing
the order of elements.

[1, 2, 3].reverse() # [3, 2, 1]

Sorting a list
Slow for large lists: O(n
log n), n list elements.

[2, 4, 2].sort() # [2, 2, 4]

Indexing
Finds index of the first
occurence of an element
in the list. Is slow when
traversing the whole list.

[2, 2, 4].index(2)
index of element 4 is "0"

[2, 2, 4].index(2,1)
index of el. 2 after pos 1 is "1"

Stack
Python lists can be used
intuitively as stack via
the two list operations
append() and pop().

stack = [3]

stack.append(42) # [3, 42]
stack.pop() # 42 (stack: [3])
stack.pop() # 3 (stack: [])

Set basket = {'apple', 'eggs',
 'banana', 'orange'}

4.3. COMPLEX DATA TYPES 73

Unordered collection of
unique elements
(at-most-once).

same = set(['apple', 'eggs',
 'banana', 'orange'])
print(basket == same) # True

Dictionary
A useful data structure
for storing (key, value)
pairs.

calories = {'apple' : 52,
 'banana' : 89,
 'choco' : 546}

Reading and writing
Read and write elements
by specifying the key
within the brackets. Use
the keys() and values()
functions to access all
keys and values of the
dictionary.

c = calories

print(c['apple'] < c['choco']) # True
c['cappu'] = 74
print(c['banana'] < c['cappu']) # False
print('apple' in c.keys()) # True
print(52 in c.values()) # True

Dictionary Looping
You can access the (key,
value) pairs of a
dictionary with the
items() method.

for k, v in calories.items():
print(k) if v > 500 else None

'chocolate'

Membership operator
Check with the keyword
in whether the set, list,
or dictionary contains an
element. Set
containment is faster
than list containment.

basket = {'apple', 'eggs',
 'banana', 'orange'}
print('eggs' in basket} # True
print('mushroom' in basket} # False

List and Set
Comprehension
List comprehension is
the concise Python way
to create lists. Use
brackets plus an
expression, followed by
a for clause. Close with

List comprehension

[('Hi ' + x) for x in ['Alice', 'Bob',
'Pete']]
['Hi Alice', 'Hi Bob', 'Hi Pete']

[x * y for x in range(3) for y in
range(3) if x>y]
[0, 0, 2]

74
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE
zero or more for or if
clauses.

Set comprehension is
similar to list
comprehension.

Set comprehension

squares = { x**2 for x in [0,2,4] if x
< 4 } # {0, 4}

4.4. CLASSES 75

4.4 Classes

Object-oriented programming is an influen-
tial, powerful, and expressive programming
abstraction. The programmer thinks in terms
of classes and objects. A class is a blueprint
for an object. An object contains specific data
and provides the functionality specified in the
class.

Say, you are programming a game to let
you build, simulate, and grow cities. In object-
oriented programming, you represent all things
(buildings, persons, or cars) as objects. For
example, each building object stores data such
as name, size, and price tag. Additionally,
each building provides a defined functionality
such as calculate_monthly_earnings().
This simplifies reading and understanding your
code for other programmers. Even more im-

76
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE

portant, you can now easily divide responsi-
bilities. You code the buildings and your col-
league codes the moving cars.

In short, object-oriented programming helps
you to write readable code. By learning object
orientation, your skill of collaborating with
others on complex problems improves. The
next cheat sheet introduces the most basic
concepts.

4.4. CLASSES 77

78
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE

4.5. FUNCTIONS AND TRICKS 79

4.5 Functions and
Tricks

Python is full of extra tricks and special func-
tionality. Learning these tricks makes you
more efficient and productive. But more im-
portantly, these tricks make programming easy
and fun. In the next cheat sheet, I give you
the most important ones.

80
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE
ADVANCED FUNCTIONS

map(func, iter)
Executes the function on all elements of the iterable. Example:
list(map(lambda x: x[0], ['red', 'green', 'blue']))
Result: ['r', 'g', 'b']

map(func, i1, ..., ik)

Executes the function on all k elements of the k iterables. Example:
list(map(lambda x, y: str(x) + ' ' + y + 's' , [0, 2, 2],
['apple', 'orange', 'banana']))
Result: ['0 apples', '2 oranges', '2 bananas']

string.join(iter)

Concatenates iterable elements separated by string. Example:
' marries '.join(list(['Alice', 'Bob']))
Result: 'Alice marries Bob'

filter(func, iterable)

Filters out elements in iterable for which function returns False (or 0). Example:
list(filter(lambda x: True if x>17 else False, [1, 15, 17,
18])) # Result: [18]

string.strip()

Removes leading and trailing whitespaces of string. Example:
print("\n \t 42 \t ".strip()) # Result: 42

sorted(iter)

Sorts iterable in ascending order. Example:
sorted([8, 3, 2, 42, 5]) # Result: [2, 3, 5, 8, 42]

sorted(iter, key=key)

Sorts according to the key function in ascending order. Example:
sorted([8, 3, 2, 42, 5], key=lambda x: 0 if x==42 else x)
[42, 2, 3, 5, 8]

help(func)

Returns documentation of func. Example:

4.5. FUNCTIONS AND TRICKS 81

help(str.upper()) # Result: '... to uppercase.'

zip(i1, i2, ...)

Groups the i-th elements of iterators i1, i2, … together. Example:
list(zip(['Alice', 'Anna'], ['Bob', 'Jon', 'Frank']))
Result: [('Alice', 'Bob'), ('Anna', 'Jon')]

Unzip
Equal to: 1) unpack the zipped list, 2) zip the result. Example:
list(zip(*[('Alice', 'Bob'), ('Anna', 'Jon')]
Result: [('Alice', 'Anna'), ('Bob', 'Jon')]

enumerate(iter)

Assigns a counter value to each element of the iterable. Example:
list(enumerate(['Alice', 'Bob', 'Jon']))
Result: [(0, 'Alice'), (1, 'Bob'), (2, 'Jon')]

TRICKS

python -m http.server <P>
Want to share files between your PC and your phone? Run this command in
your PC’s shell. <P> is any port number between 0–65535. Type < IP address
of PC>:<P> in the phone’s browser. Now, you can browse the files in the PC’s
directory.

Read comic
import antigravity
Opens the comic series xkcd in your web browser

Zen of Python
import this
'...Beautiful is better than ugly. Explicit is ...'

Swapping variables
This is a breeze in Python. No offense, Java! Example:
a, b = 'Jane', 'Alice'
a, b = b, a

Result: a = 'Alice', b = 'Jane'

82
CHAPTER 4. A QUICK OVERVIEW OF

THE PYTHON LANGUAGE
Unpacking arguments
Use a sequence as function arguments via asterisk operator *. Use a dictionary
(key, value) via double asterisk operator **. Example:
def f(x, y, z):
 return x + y * z
f(*[1, 3, 4]) # 13
f(**{'z' : 4, 'x' : 1, 'y' : 3}) # 13

Extended Unpacking
Use unpacking for multiple assignment feature in Python. Example:
a, *b = [1, 2, 3, 4, 5]
Result: a = 1, b = [2, 3, 4, 5]

Merge two dictionaries
Use unpacking to merge two dictionaries into a single one. Example:
x={'Alice' : 18}
y={'Bob' : 27, 'Ann' : 22}
z = {**x,**y}

Result: z = {'Alice': 18, 'Bob': 27, 'Ann': 22}

5

Fifty Code Puzzles

In the previous chapters, we have seen the
benefits of puzzle-based learning. Moreover,
we have revisited the most important Python
keywords, data structures, tips, and tricks.
Now take your pen, fill your cup of coffee,
and let’s dive into the 50 code puzzles in the
book. The puzzles are very basic in the be-
ginning but will become harder and harder as

83

84 CHAPTER 5. FIFTY PUZZLES

you proceed with the book. Again, take your
time and try to understand each and every
line until you move on to the next puzzle.

5.1. HELLO WORLD 85

5.1 Hello World

Puzzle 1
#############################
id 321
Puzzle Elo 527
Correctly solved 86 %
#############################

print('hello world')

What is the output of this code?
Code must communicate with the outside

world to have any impact. If there is no inter-
face, it is not worth executing the code—the
precious CPU power would be better spent on
crypto mining.

Via the print function, you connect your
program to the outside world. This function,
as the name indicates, prints a value to the

86 CHAPTER 5. FIFTY PUZZLES

standard output.
What is the standard output? You can

think of it as the environment in which your
Python program lives. Your standard output
is the air around you. If you shout “Ouch!”,
every person in your environment can read
from your standard output that you just ex-
perienced pain.

The data that is printed to the standard
output is of type string. A string is a sequence
of characters and is defined via each of the
three following ways: via the single quote ('),
double quote ("), or triple quote (''' and """).
In the puzzle, we use the single quote to define
our string 'hello world'.

Again, start with an initial rating of 1000
if you are a beginner, 1500 if you are an in-
termediate, and 2000 if you are an advanced
Python programmer. If your solution was cor-

5.1. HELLO WORLD 87

rect, add the respective Elo difference from the
table to your current Elo number. Otherwise,
subtract it from your current Elo number.

The correct solution »

hello world

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 41 -14

500 - 1000 16 -39
1000 - 1500 8 -47
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

88 CHAPTER 5. FIFTY PUZZLES

5.2 Variables & Float
Division

Puzzle 2
#############################
id 315
Puzzle Elo 625
Correctly solved 91 %
#############################

x = 55 / 11
print(x)

What is the output of this code?
The majority of people solve this puzzle

correctly. The puzzle has two goals. First, it
introduces the concept of variables. Python
evaluates the result of the expression on the
right side of the equation and stores it in the
variable x. After defining the variable, you

5.2. VARIABLES & FLOAT DIVISION 89

can access it at any point in the program code.
Second, it forces you to read code care-

fully by means of an interesting twist: Divi-
sion always returns a floating point number.
Thus, variable x stores the float value 5.0. The
print function outputs the result as a float and
not as an integer value 5. This is the source
of most errors in the code. People focus too
much on what they mean (semantics) and too
little on how they say it (syntax). But com-
puters are not good yet at interpreting the
meaning of people. We have to talk to them in
their language. So you get zero points for this
puzzle if your solution was the integer value
5.

The correct solution »

5.0

90 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 43 -12

500 - 1000 21 -34
1000 - 1500 9 -46
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

5.3. BASIC ARITHMETIC 91

5.3 Basic Arithmetic
Operations

Puzzle 3
#############################
id 314
Puzzle Elo 666
Correctly solved 75 %
#############################

x = 50 * 2 + (60 - 20) / 4
print(x)

What is the output of this code?
The Python interpreter is a powerful tool.

In this puzzle, it acts as a simple calculator.
It takes a basic mathematical expression and
calculates the result.

The syntax of expressions is straightfor-
ward: use the operators +,−, ∗ and / ex-

92 CHAPTER 5. FIFTY PUZZLES

actly as you have learned them in school. The
Python interpreter will handle basic rules such
as multiplication before addition for you.

Note that a common mistake here is that
people write the result as an integer instead
of a float. This can lead to bugs in the code
that are hard to find.

The correct solution »

110.0

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 44 -11

500 - 1000 23 -32
1000 - 1500 9 -46
1500 - 2000 8 -47

>2000 8 -47

5.3. BASIC ARITHMETIC 93

Your new Elo rating »

94 CHAPTER 5. FIFTY PUZZLES

5.4 Comments and
Strings

Puzzle 4
#############################
id 313
Puzzle Elo 691
Correctly solved 78 %
#############################

This is a comment
answer = 42 # the answer

Now back to the puzzle
text = "# Is this a comment?"
print(text)

What is the output of this code?
This puzzle introduces two basic concepts.

First, variables can hold strings. In fact, vari-
ables can hold any data type. The interpreter

5.4. COMMENTS AND STRINGS 95

determines the data type of a variable at run-
time. The data type of a variable can change:
you can assign a string to a variable, followed
by an integer. Second, comments in the code
start with the hash character # and end with
the start of the next line. Comments are im-
portant to improve the readability of your code.

The small twist in this puzzle is the ques-
tion whether the hash character within the
string literal starts a new comment. This is
not the case—a comment cannot appear within
a string.

There are two types of comments: block
comments and inline comments. Block com-
ments are indented to the same level as the
commented code. Inline comments are sepa-
rated by at least two spaces on the same line
as the commented code.

The Python standard recommends to write

96 CHAPTER 5. FIFTY PUZZLES

comments as complete sentences. Moreover,
the standard discourages the use of inline com-
ments because inline comments are often un-
necessary and clutter the code.

Note that according to the standard, the
second comment in the puzzle is considered
as bad style. Write short and conside code
and do not overuse comments. Be aware, a
friend of mine working at Google told me that
he got critized for commenting obvious state-
ments during the coding interview.

The correct solution »

Is this a comment?

5.4. COMMENTS AND STRINGS 97

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 45 -10

500 - 1000 24 -31
1000 - 1500 9 -46
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

98 CHAPTER 5. FIFTY PUZZLES

5.5 Index and
Concatenate Strings

Puzzle 5
#############################
id 331
Puzzle Elo 742
Correctly solved 63 %
#############################

x = 'silent'
print(x[2] + x[1] + x[0]

+ x[5] + x[3] + x[4])

What is the output of this code?
This puzzle introduces a powerful tool for

your Python toolbox: indexing. Make sure
you feel comfortable using it because many
advanced puzzles build on your proper under-
standing of indexing.

5.5. INDEX AND CONCATENATE
STRINGS 99

In Python, you can access every character
in the string by using an integer value that de-
fines the position of the character in the string.
We call this integer value an index.

If the string has six characters as in the
example, the indices of these characters are as
follows.

String s: s i l e n t
Index: 0 1 2 3 4 5

You can index any character using the square
bracket notation [] with their respective posi-
tion values. Many programming novices are
confused by the fact that the first element in
a sequence has index 0. Therefore, you ac-
cess the first character 's' with the expres-
sion s[0] and the third character 'l' with
the expression s[2].

100 CHAPTER 5. FIFTY PUZZLES

The plus operator + is context sensitive. It
calculates the mathematical sum for two given
numerical values but appends strings for two
given string values. For example, the expres-
sion 'a' + 'b' returns a new string 'ab'.

With this information, you are now able
to determine how string s is reordered us-
ing indexing notation and the ‘+’ operator for
strings.

A small note in case you were confused.
There is no separate character type in Python;
a character is a string of size one.

The correct solution »

listen

5.5. INDEX AND CONCATENATE
STRINGS 101

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 45 -10

500 - 1000 27 -28
1000 - 1500 10 -45
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

102 CHAPTER 5. FIFTY PUZZLES

5.6 List Indexing

Puzzle 6
#############################
id 337
Puzzle Elo 745
Correctly solved 91 %
#############################

squares = [1, 4, 9, 16, 25]
print(squares[0])

What is the output of this code?
This puzzle introduces the simple but pow-

erful list data structure in Python. You have
to search very hard to find an algorithm that
doesn’t use a list. Many famous algorithms
such as quicksort are based only on a single
list as their core data structure.

Wikipedia defines a list as “an abstract

5.6. LIST INDEXING 103

data type that represents a countable num-
ber of ordered values.” 1 The data type is
“abstract” because you can use lists indepen-
dently of the concrete data type(s) of the list
elements.

The Python way of handling lists and list
access is simple and clean. Create a list by
writing comma-separated values between the
opening and closing square brackets.

In the Java programming language, you
must use redundant natural language function
calls such as get(i) to access a list value. In
Python, this is much easier. You access the
i-th element in a list lst with the intuitive
bracket notation lst[i]. This notation is
consistent for all compound data types such
as strings and arrays.

1https://en.wikipedia.org/wiki/List_(abstract_
data_type)

104 CHAPTER 5. FIFTY PUZZLES

This leads to small and repeated time sav-
ings during programming. The time savings
of millions of developers add up to a strong
collective argument for Python.

The correct solution »

1

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 45 -10

500 - 1000 27 -28
1000 - 1500 10 -45
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

5.7. SLICING IN STRINGS 105

5.7 Slicing in Strings

Puzzle 7
#############################
id 336
Puzzle Elo 778
Correctly solved 72 %
#############################

word = "galaxy"
print(len(word[1:]))

What is the output of this code?
More than one out of four Finxter users

cannot solve this puzzle. There are two con-
cepts that are novel for them: the len() func-
tion and slicing.

The len() function is a handy tool to get
the length of built-in Python data types such
as strings, lists, dictionaries, or tuples. Learn

106 CHAPTER 5. FIFTY PUZZLES

it now and make your future life easier.
Slicing is a Python-specific concept for ac-

cessing a range of values in sequence types
such as lists or strings. It is one of the most
popular Python features. Understanding slic-
ing is one of the key requirements for under-
standing most existing Python code bases. In
other words, the time you invest now in mas-
tering slicing will be repaid a hundredfold dur-
ing your career.

The idea of slicing is simple. Use the bracket
notation to access a sequence of elements in-
stead of only a single element. You do this via
the colon notation of [start:end]. This no-
tation defines the start index (included) and
the end index (excluded). Note that forget-
ting that the end index is always excluded in
sequence operators is a very common source
of bugs.

5.7. SLICING IN STRINGS 107

For the sake of completeness, let me quickly
explain the advanced slicing notation [start:end:step].
The only difference to the previous notation is
that it allows you to specify the step size as
well. For example, the command 'python'[:5:2]
returns every second character up to the fourth
character, i.e., the string 'pto'.

The correct solution »

5

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 29 -26
1000 - 1500 10 -45
1500 - 2000 8 -47

>2000 8 -47

108 CHAPTER 5. FIFTY PUZZLES

Your new Elo rating »

5.8. INTEGER DIVISION 109

5.8 Integer Division
Puzzle 8
#############################
id 316
Puzzle Elo 781
Correctly solved 69 %
#############################

x = 50 // 11
print(x)

What is the output of this code?
When I started to learn Python 3, I used

to be confused about the semantics of divid-
ing two integers. Is the result a float or an
integer value? The reason for my confusion
was a nasty Java bug that I once found in my
code. The code was supposed to perform a
simple division of two integers and return a
float parameter value between zero and one.

110 CHAPTER 5. FIFTY PUZZLES

But Java uses integer division, i.e., it skips the
remainder. Thus, the value was always either
zero or one, but took never a value in-between.
It took me days to figure that out.

Save yourself the debugging time by mem-
orizing the following rule once and for all. The
// operator performs integer (floor) division
and the / operator performs float (true) divi-
sion. An example for floor division is 50 //
11 = 4. An example for true division is 50
/ 11 = 4.545454545454546.

Note that floor division always rounds “down”,
i.e., 3 // 2 == 1 and -3 // 2 == -2.

Although the puzzle seems simple, more
than twenty percent of the Finxter users can-
not solve it.

5.8. INTEGER DIVISION 111

The correct solution »

4

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 29 -26
1000 - 1500 10 -45
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

112 CHAPTER 5. FIFTY PUZZLES

5.9 String Manipulation
Operators

Puzzle 9
#############################
id 327
Puzzle Elo 786
Correctly solved 60 %
#############################

print(3 * 'un' + 'ium')

What is the output of this code?
Python has powerful built-in capabilities

for string manipulation. Web companies like
Google love Python because it is a perfect
fit for the text-based World Wide Web. The
puzzle explains two basic string manipulation
operators. The + operator concatenates two
strings. The * operator concatenates a string

5.9. STRING MANIPULATION
OPERATORS 113

to itself repeatedly. The standard arithmetic
rules apply to these operators: multiplication
first, then addition.

The correct solution »

unununium

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 30 -25
1000 - 1500 10 -45
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

114 CHAPTER 5. FIFTY PUZZLES

5.10 Implicit String
Concatenation

Puzzle 10
#############################
id 328
Puzzle Elo 794
Correctly solved 74 %
#############################

x = 'py' 'thon'
print(x)

What is the output of this code?
A well-designed puzzle conveys one single

point that surprises the reader. This puzzle
introduces a language feature that surprised
me when I first saw it. The Python interpreter
automatically concatenates two strings that
are next to each other. Think about all the

5.10. IMPLICIT STRING
CONCATENATION 115

pluses + you could save!
Just kidding: forget this trick immediately.

Code is read much more often than it is writ-
ten and these tricks will confuse some readers
of your code. My editor even recommended
skipping this puzzle because it may be confus-
ing. Although he is totally right, I still keep
it in the book because I think you may find it
interesting—and because you may also want
to understand other people’s dirty code.

The correct solution »

python

116 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 30 -25
1000 - 1500 10 -45
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

5.11. SUM AND RANGE FUNCTIONS117

5.11 Sum and Range
Functions

Puzzle 11
#############################
id 93
Puzzle Elo 815
Correctly solved 76 %
#############################

print(sum(range(0, 7)))

What is the output of this code?
Do you know the story of the brilliant math-

ematician Carl Friedrich Gauss? When 8-year
old Gauss went to school, his math teacher
sought a break. He told his class to solve
the problem of adding all consecutive num-
bers from 1 to 100: 1 + 2 + 3 + ... + 100. But
as little Gauss promptly reported the solu-

118 CHAPTER 5. FIFTY PUZZLES

tion, the break was over before it began. Sur-
prised (and a bit grumpy as the story goes),
the teacher asked the boy how he had come
up with a solution so quickly. Gauss explained
his simple solution. He organized the sequence
into pairs of numbers each summing up to 101:
1+100, 2+99, 3+98, ..., 50+51. There are 50
such pairs, so the total result was 50 ∗ 101 =
5050.

Yet, the modern-time little Gauss would
be even lazier. He would type the following
one-liner into his mobile Python app: sum(range(1,101)).
The range function returns a sequence start-
ing from the first value (inclusive) and end-
ing at the second value (exclusive). The sum
function sums up the values of this sequence.
Combining both functions sums up the se-
quence from 1–100. Although your computer
uses a brute-force approach, it computes the

5.11. SUM AND RANGE FUNCTIONS119

result faster than any human—dumb, but blaz-
ingly fast!

The correct solution »

21

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 31 -24
1000 - 1500 11 -44
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

120 CHAPTER 5. FIFTY PUZZLES

5.12 Append Function
for Lists

Puzzle 12
#############################
id 341
Puzzle Elo 821
Correctly solved 71 %
#############################

cubes = [1, 8, 27]
cubes.append(4 ** 3)
print(cubes)

What is the output of this code?
This puzzle shows how you can add a new

value to the end of the list using the append()
function. Before appending, the Python inter-
preter evaluates the expression given within
the brackets. Recall that the ** operator re-
turns the power function, i.e., 4 ** 3 reads

5.12. APPEND FUNCTION FOR LISTS121

four to the power of three.

The correct solution »

[1, 8, 27, 64]

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 32 -23
1000 - 1500 11 -44
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

122 CHAPTER 5. FIFTY PUZZLES

5.13 Overshoot Slicing
Puzzle 13
#############################
id 335
Puzzle Elo 829
Correctly solved 83 %
#############################

word = "galaxy"
print(word[4:50])

What is the output of this code?
This puzzle introduces a special feature of

slicing. As a recap, Python slicing means to
access a subsequence of a sequence type using
the notation [start:end]. We show here
that slicing is robust even if the end index
overshoots the maximal sequence index. So
the big take away from this puzzle is—that
nothing unexpected happens if slicing over-

5.13. OVERSHOOT SLICING 123

shoots sequence indices.

The correct solution »

xy

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 32 -23
1000 - 1500 11 -44
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

124 CHAPTER 5. FIFTY PUZZLES

5.14 Modulo Operator

Puzzle 14
#############################
id 317
Puzzle Elo 835
Correctly solved 62 %
#############################

x = 51 % 3
print(x)

What is the output of this code?
When I studied computer science, the pro-

fessors pushed us to learn the theory behind
modulo operations and residual classes. But
many of us lacked motivation to do so. We
could not see why calculating the remainder
of the division, i.e., modulo, is such an impor-
tant concept.

5.14. MODULO OPERATOR 125

Yet, many practical code projects later, I
must admit that modulo plays a role in many
of them. Learning modulo is not optional.
Suppose your code has a main loop and you
want to execute a monitoring function each
thousandth iteration i. Modulo is your friend
here: simply use the fact that for every thou-
sandth iteration, the result of i%1000 is zero.

Learning these small code patterns is the
key to becoming a great coder. You must
know them by heart, without much thinking.
This frees your mental energy and allows you
to focus on the big picture. You will produce
better and more meaningful code. In fact, one
of the main ideas of the website Finxter.com
is to burn these small code patterns into your
head.

126 CHAPTER 5. FIFTY PUZZLES

The correct solution »

0

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 32 -23
1000 - 1500 11 -44
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

5.15. BRANCHING 127

5.15 Branching

Puzzle 15
#############################
id 148
Puzzle Elo 845
Correctly solved 36 %
#############################

def if_confusion(x, y):
if x > y:

if x - 5 > 0:
x = y
return "A" if y == y + y else "B"

elif x + y > 0:
while x > y: x -= 1
while y > x: y -= 1
if x == y:

return "E"
else:

if x - 2 > y - 4:
x_old = x
x = y * y
y = 2 * x_old
if (x - 4) ** 2 > (y - 7) ** 2:

128 CHAPTER 5. FIFTY PUZZLES

return "C"
return "D"

return "H"

print(if_confusion(3, 7))

What is the output of this code?
Now it is getting interesting! When I made

this puzzle, I thought that it might be too
simple. But look at the numbers: only 36% of
our users solved it. An interesting observation
is that the puzzle still has a low Elo rating.
This indicates that finxters with higher Elo
can solve it easily. Hence, these intermediate
to advanced coders have low error rates and
push it down the Elo ladder. But finxters with
lower Elo ratings struggle with the puzzle.

Here are a few tips for the latter group.
Never let the sheer mass of code intimidate
you. You do not have to read each and ev-

5.15. BRANCHING 129

ery line to adhere to any kind of perfection-
ism. Your computer does not execute the code
strictly from top to bottom and you shouldn’t
as well. Instead, start where the programm
execution starts: at the bottom with the func-
tion call if_confusion(3, 7). Now you
know that x=3 and y=7. Then you proceed
to do what the interpreter does. As x>y is
false, you can skip the whole upper part of
the function. Similarly, you can skip the if
branch for x-2>y-4. It’s easy to see that the
function returns 'H'.

The correct solution »

H

130 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 33 -22
1000 - 1500 11 -44
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

5.16. NEGATIVE INDICES 131

5.16 Negative Indices

Puzzle 16
#############################
id 332
Puzzle Elo 848
Correctly solved 54 %
#############################

x = 'cool'
print(x[-1] + x[-2]

+ x[-4] + x[-3])

What is the output of this code?
You can index single characters in strings

using the bracket notation. The first charac-
ter has index 0, the second index 1, and so
on. Did you ever want to access the last el-
ement in a string? Counting the indices can
be a real pain for long strings with more than
8–10 characters. But no worries, Python has

132 CHAPTER 5. FIFTY PUZZLES

a language feature for this. Instead of starting
counting from the left, you can also start from
the right. Access the last character with the
negative index -1, the second last with the in-
dex -2, and so on. In summary, there are two
ways to index sequence positions, from the left
and from the right.

The correct solution »

loco

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 33 -22
1000 - 1500 11 -44
1500 - 2000 8 -47

>2000 8 -47

5.16. NEGATIVE INDICES 133

Your new Elo rating »

134 CHAPTER 5. FIFTY PUZZLES

5.17 The For Loop

Puzzle 17
#############################
id 348
Puzzle Elo 858
Correctly solved 67 %
#############################

words = ['cat', 'mouse']
for word in words:

print(len(word))

What is the output of this code?
Repetition is everywhere. The sun goes up

every morning and after winter comes spring.
As coders, we model and simulate the real
world and create our own worlds with our
own laws and repetitions. Suppose you want
to program a web server that repeats forever
the following behavior. Wait for a user re-

5.17. THE FOR LOOP 135

quest and answer it. How can you program
the web server to repeat this behavior thou-
sands of times?

The naive approach is to put the sequence
of steps into the source code itself. In other
words, copy and paste the sequence of steps
thousands of times. Yet, repeated code is re-
dundant and hard to read, debug, and main-
tain. As programmers, we should avoid re-
dundant code at all costs.

The Python for loop statement is a way
out of redundant code. You write code only
once and put it into different contexts. For
example, the loop variable (i.e., word in the
puzzle) accounts for the different contexts of
loop executions. In the puzzle, the variable
word takes first the value ‘cat’ and second
the value ‘mouse’.

Among the ingredients that make a pro-

136 CHAPTER 5. FIFTY PUZZLES

gramming language powerful are control flow
statements. The Python for loop is one such
control flow statement. It repeats execution
of the code body for all sequence elements—
iterating over all elements in the order of the
sequence. In the puzzle, we print out the
length of each word.

The correct solution »

3
5

5.17. THE FOR LOOP 137

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 46 -9

500 - 1000 34 -21
1000 - 1500 11 -44
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

138 CHAPTER 5. FIFTY PUZZLES

5.18 Functions and
Naming

Puzzle 18
#############################
id 358
Puzzle Elo 899
Correctly solved 61 %
#############################

def func(x):
return x + 1

f = func
print(f(2) + func(2))

What is the output of this code?
Too much redundant code indicates poor

programming style. So how to avoid redun-
dant code? Use functions. Functions make
code more general. Suppose you want to cal-

5.18. FUNCTIONS AND NAMING 139

culate the square root of 145. You could either
calculate it for the specific value 145 or define
a function that calculates the square root for
any value x.

We say that a function encapsulates a se-
quence of program instructions. The ideal
function solves a single semantic high-level goal.
For instance, you can encapsulate a complex
task into a function, such as searching the web
for specific keywords. In this way, the com-
plex task becomes a simple one-liner: calling
the function. Functions enable others to reuse
your code and allow you to reuse other peo-
ple’s code. You are standing on the shoulders
of giants.

You can define a function with the key-
word def, followed by a name and the argu-
ments of the function. The Python interpreter
maintains a symbol table that stores all func-

140 CHAPTER 5. FIFTY PUZZLES

tion definitions, i.e., mappings from function
names to function objects. In this way, the
interpreter can relate each occurrence of the
function name to the defined function object.
Just remember: a single function object can
have zero, one, or even many names.

In the puzzle, we assign the function object
to the name func and then reassign it to the
new name f. We then use both the names in
the code. Upon the function call, the Python
interpreter will find the function in the symbol
table and execute it. This can make your code
more readable when calling the same function
in different contexts.

The correct solution »

6

5.18. FUNCTIONS AND NAMING 141

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 36 -19
1000 - 1500 12 -43
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

142 CHAPTER 5. FIFTY PUZZLES

5.19 Concatenating
Slices

Puzzle 19
#############################
id 334
Puzzle Elo 954
Correctly solved 45 %
#############################

word = "galaxy"
print(word[:-2] + word[-2:])

What is the output of this code?
This puzzle revisits the important concept

of slicing. Slicing is one of the most popular
features in Python. Understand the term and
concept of slicing and you are at least among
the intermediate Python programmers.

Slicing, like indexing, retrieves specific char-

5.19. CONCATENATING SLICES 143

acters from a sequence such as a string. But
while indexing retrieves only a single charac-
ter, slicing retrieves a whole substring within
an index range.

Use the bracket notation for slicing with
the start and end position identifiers. For ex-
ample, word[i:j] returns the substring start-
ing from index i (included) and ending in in-
dex j (excluded).

You can also skip the position identifier be-
fore or after the slicing colon. This indicates
that the slice starts from the first or last posi-
tion, respectively. For example, word[:i] +
word[i:] returns the same string as word.

The correct solution »

galaxy

144 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 38 -17
1000 - 1500 14 -41
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

5.20. ARBITRARY ARGUMENTS 145

5.20 Arbitrary
Arguments

Puzzle 20
#############################
id 365
Puzzle Elo 1005
Correctly solved 57 %
#############################

def func(a, *args):
print(a)
for arg in args:

print(arg)

func("A", "B", "C")

What is the output of this code?
Suppose you want to create a function that

allows an arbitrary number of arguments. An
example is recognizing faces in images where
each image consists of one or more pixel ar-

146 CHAPTER 5. FIFTY PUZZLES

rays. You achieve this by prefixing the func-
tion argument with the asterisk operator (or
star operator), e.g., *pixels. Now, you can
pass a tuple or a list as a function argument,
which you can access via indexing or iteration
in a loop.

You can combine both types of parameters
in a function: normal positional parameters
(e.g., a in the puzzle) and an arbitrary length
parameter list (e.g., *args in the puzzle). If
you call the function with many arguments,
the interpreter fills in name slot(s) for normal
positional arguments first. The arbitrary ar-
gument list handles the rest of the arguments.

The correct solution »

A

5.20. ARBITRARY ARGUMENTS 147

B
C

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 40 -15
1000 - 1500 15 -40
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

148 CHAPTER 5. FIFTY PUZZLES

5.21 Indirect Recursion

Puzzle 21
#############################
id 76
Puzzle Elo 1032
Correctly solved 54 %
#############################

def ping(i):
if i > 0:

return pong(i - 1)
return "0"

def pong(i):
if i > 0:

return ping(i - 1)
return "1"

print(ping(29))

What is the output of this code?
Recursion is a powerful tool in your cod-

5.21. INDIRECT RECURSION 149

ing toolbox. Understanding it is a key skill
on your path to mastery. So what is recur-
sion? Stephen Hawking used a concise expla-
nation: “to understand recursion, one must
first understand recursion.”

This puzzle uses indirect recursion: func-
tion f calls function g which calls function f.
Each function call solves a slightly easier prob-
lem. In recursive problem solving, a function
knows the result for some base cases (i.e., the
naive solutions). It breaks a complex problem
into a combination of less complex subprob-
lems. As the subproblems are getting easier,
they finally reach the base cases. These are
the least complex subproblems and we know
their solutions. The idea is to build the so-
lution of the complex problem from the solu-
tions of the subproblems.

So when you call ping(29), the ping func-

150 CHAPTER 5. FIFTY PUZZLES

tion reduces this question to pong(28)—an
easier problem. The calling function ping
waits for pong to return a solution. But pong
asks back ping(27) and waits for a solution.
On a higher level, ping receives odd and pong
even argument values for the initial input i=29.
Thus, the last call is pong(0), which returns
1. Each calling function is waiting for the re-
sult of the called function. Each calling func-
tion receives the value 1 and returns it to
its parent calling function. Finally, the top-
most functional instance ping(29) returns
the value 1 as the final result.

The correct solution »

1

5.21. INDIRECT RECURSION 151

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 41 -14
1000 - 1500 16 -39
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

152 CHAPTER 5. FIFTY PUZZLES

5.22 String Slicing

Puzzle 22
#############################
id 333
Puzzle Elo 1038
Correctly solved 53 %
#############################

word = "bender"
print(word[1:4])

What is the output of this code?
The language feature slicing does not only

apply to lists, but also to strings. As both
lists and strings are sequencing types, slicing
is only one among several similarities. For ex-
ample, you can also iterate over the characters
in a string using the for loop (e.g., for c in
word).

5.22. STRING SLICING 153

Only half of the Finxter users can solve
this puzzle. The main problem is to identify
the correct end index of the slice. Recap: the
end index is not included in the slice. Here
is how you can find the correct solution (in
bold).

b e n d e r
0 1 2 3 4 5

The correct solution »

end

154 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 41 -14
1000 - 1500 17 -38
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

5.23. SLICE ASSIGNMENT 155

5.23 Slice Assignment

Puzzle 23
#############################
id 342
Puzzle Elo 1104
Correctly solved 52 %
#############################

customers = ['Marie', 'Anne', 'Donald']
customers[2:4] = ['Barack', 'Olivia',

'Sophia']↪→
print(customers)

What is the output of this code?
A great coder seeks the cleanest and short-

est way to accomplish their goals. This puzzle
demonstrates a Python trick that I found very
useful: slice assignments.

Suppose you work in a biotech startup on
DNA sequence modeling. You maintain dif-

156 CHAPTER 5. FIFTY PUZZLES

ferent DNA sequences as lists of string val-
ues. To simulate recombinations of DNA se-
quences, you change subsequences of the list
on a regular basis. In this case, slicing is your
best friend: It helps you to read specific sub-
sequences. Moreover, slice assignments enable
you to replace, append, or clear whole subse-
quences.

In the puzzle, we have a list of customers
that are partially replaced by new customers.
The puzzle shows how the length of the orig-
inal sequence may change due to the slice as-
signment. The slice assignment inserts a list
of three customers into the customer list. A
beautiful way to clear the list is:
customers[:] = [].

5.23. SLICE ASSIGNMENT 157

The correct solution »

[‘Marie’, ‘Anne’, ‘Barack’,
‘Olivia’, ‘Sophia’]

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 43 -12
1000 - 1500 20 -35
1500 - 2000 8 -47

>2000 8 -47

Your new Elo rating »

158 CHAPTER 5. FIFTY PUZZLES

5.24 Default Arguments

Puzzle 24
#############################
id 360
Puzzle Elo 1152
Correctly solved 50 %
#############################

def ask(prompt, retries=4, output='Error'):
for _ in range(retries):

response = input(prompt).lower()
if response in ['y', 'yes']:

return True
if response in ['n', 'no']:

return False
print(output)

print(ask('Want to know the answer?', 5))

Is ask('Want to know the answer?',
5) a valid function call?

5.24. DEFAULT ARGUMENTS 159

This puzzle introduces the concept of de-
fault arguments in Python.

Suppose you have created a Python com-
mand line tool for your business. The tool
requires user confirmation for different activi-
ties like writing or deleting files.

To avoid redundant code, you have imple-
mented a generic function that handles the
interaction with the user. The default behav-
ior should consist of three steps: (1) You ask
(prompt) the user a yes/no question; (2) the
user enters some response; (3) as long as the
response is invalid, the function repeats up to
four times—each time printing an error mes-
sage ‘Error’. The number of repetitions and
the reminder should be customizable via the
parameters.

To achieve this, you can specify default ar-
guments as given in the puzzle. You can use

160 CHAPTER 5. FIFTY PUZZLES

the default parameters by calling ask('Hi?').
Or you can overwrite them in the order of their
definition (one, several, or all parameters).

Also did you notice that single underscore
is a valid name in Python? By convention, you
can use it as a throw-away name—when you
don’t really need to access the actual value. In
the puzzle, we ask the user four times but do
not need to know how often we have already
asked.

It is interesting that only 50% of all Finx-
ter users solve this puzzle correctly. That’s no
better than random guessing. Partial replace-
ment of default arguments is a new feature
to most users. Is it new to you? You have
to master these basic language features be-
fore you can climb to the level of an advanced
coder.

5.24. DEFAULT ARGUMENTS 161

The correct solution »

Yes

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 44 -11
1000 - 1500 22 -33
1500 - 2000 9 -46

>2000 8 -47

Your new Elo rating »

162 CHAPTER 5. FIFTY PUZZLES

5.25 Slicing and the
len() Function

Puzzle 25
#############################
id 344
Puzzle Elo 1211
Correctly solved 44 %
#############################

letters = ['a', 'b', 'c', 'd']
print(len(letters[1:-1]))

What is the output of this code?
The goal of this puzzle is to deepen your

understanding of the important concept of slic-
ing.

Yet, it turned out to be more a test of thor-
oughness than anything else. The majority
of users cannot solve this puzzle—one of the

5.25. SLICING AND THE LEN()
FUNCTION 163

most common errors is to overlook the word
len().

The built-in function len() returns the
length of a sequence object such as a string or
a list. In the puzzle, we return the length of
the list after cutting the head and the tail. An
illuminating example for lack of thoroughness,
which is also the major source of bugs in your
code. Ask any professional programmer!

The correct solution »

2

164 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 45 -10
1000 - 1500 25 -30
1500 - 2000 9 -46

>2000 8 -47

Your new Elo rating »

5.26. NESTED LISTS 165

5.26 Nested Lists

Puzzle 26
#############################
id 345
Puzzle Elo 1238
Correctly solved 39 %
#############################

a = ['a', 'b']
n = [1, 2]
x = [a, n]
print(x[1])

What is the output of this code?
Many practical code projects use lists con-

taining not only primitive but also complex
data types. Examples of primitive data types
are integers, strings, or floats. Examples of
complex data types are customer objects, cam-
era events, or even lists.

166 CHAPTER 5. FIFTY PUZZLES

In the puzzle, we show the latter: there is
a nested list that contains two other lists. Ac-
cessing an element of this list using the index
notation returns a list itself.

Python is a dynamically typed program-
ming language. Hence, there can be hybrid
lists containing different data types. However,
this is not too common.

The correct solution »

[1, 2]

5.26. NESTED LISTS 167

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 45 -10
1000 - 1500 27 -28
1500 - 2000 9 -46

>2000 8 -47

Your new Elo rating »

168 CHAPTER 5. FIFTY PUZZLES

5.27 Clearing Sublists

Puzzle 27
#############################
id 343
Puzzle Elo 1248
Correctly solved 47 %
#############################

letters = ['a', 'b', 'c',
'd', 'e', 'f', 'g']

letters[1:] = []
print(letters)

What is the output of this code?
In verbose programming languages such as

Java, you have to iterate over a list to re-
move subsequent elements. In Python, a sim-
ple one-liner does that for you. Use the slice
notation to select a sequence of items in the
list. This is the lefthand side of your equation.

5.27. CLEARING SUBLISTS 169

Then overwrite the selected sequence with the
empty (or any other) list. It is because of this
kind of clarity and simplicity that Python has
become so popular nowadays.

The correct solution »

[‘a’]

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 45 -10
1000 - 1500 27 -28
1500 - 2000 10 -45

>2000 8 -47

Your new Elo rating »

170 CHAPTER 5. FIFTY PUZZLES

5.28 The Fibonacci
Series

Puzzle 28
#############################
id 346
Puzzle Elo 1300
Correctly solved 48 %
#############################

Fibonacci series:
a, b = 0, 1
while b < 5:

print(b)
a, b = b, a + b

What is the output of this code?
The Fibonacci series was discovered by the

Italian mathematician Leonardo Fibonacci in
1202 and even earlier by Indian mathemati-
cians. The series appears in unexpected areas

5.28. THE FIBONACCI SERIES 171

such as economics, mathematics, art, and na-
ture.

In the puzzle, we give a simple algorithm
to calculate the Fibonacci numbers. The se-
ries starts with the Fibonacci numbers zero
and one. The algorithm calculates the next
element of the series as the sum of the previ-
ous two elements. For this, the algorithm only
has to keep track of the last two elements in
the series. Thus, we maintain two variables a
and b, being the second last and last element
in the series, respectively. This computation
repeats until the while condition evaluates to
False, i.e., until b≥5.

For clarity of the code, I used the language
feature of iterable unpacking in the first and
the last line. This feature works as follows.
On the left-hand side of the assignment, there
is any sequence of variables. On the right-

172 CHAPTER 5. FIFTY PUZZLES

hand side of the assignment, we specify the
values to be assigned to these variables.

Note that all expressions on the right-hand
side are first evaluated before they are as-
signed. This is an important property for our
algorithm. Without this property, the last line
would be wrong as the expression a+b would
consider the wrong value for a.

The correct solution »

1 1 2 3

5.28. THE FIBONACCI SERIES 173

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 46 -9
1000 - 1500 30 -25
1500 - 2000 10 -45

>2000 8 -47

Your new Elo rating »

174 CHAPTER 5. FIFTY PUZZLES

5.29 The continue
Statement and the
Modulo Operator

Puzzle 29
#############################
id 355
Puzzle Elo 1311
Correctly solved 54 %
#############################

for num in range(2, 8):
if not num % 2:

continue
print(num)

What is the output of this code?
This puzzle prints all odd values between

two (included) and eight (excluded). To achieve
this, we check whether the current value num
can be divided by 2 without remainder. Python,

5.29. CONTINUE AND MODULO 175

like other languages, uses the percentage sym-
bol % as modulo operator. This modulo op-
erator returns the remainder when dividing
a number n by another number x, i.e., n -
(n//x) * x. For example, it returns 12 %
2 = 0 if there is no remainder and 13 % 2 =
1 if the remainder is 1.

There is a second language feature in the
puzzle, which is the continue operator. This
operator commands the interpreter to termi-
nate the current loop iteration. Then, the in-
terpreter proceeds with the next iteration.

Hence, if the loop variable has an even
value, the interpreter skips the print state-
ment. If the loop variable has an odd value,
the interpreter skips the continue statement.

176 CHAPTER 5. FIFTY PUZZLES

The correct solution »

3
5
7

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 46 -9
1000 - 1500 31 -24
1500 - 2000 10 -45

>2000 8 -47

Your new Elo rating »

5.30. INDEXING AND RANGE 177

5.30 Indexing Revisited
and The Range
Sequence

Puzzle 30
#############################
id 351
Puzzle Elo 1346
Correctly solved 52 %
#############################

print(range(5, 10)[-1])
print(range(0, 10, 3)[2])
print(range(-10, -100, -30)[1])

What is the output of this code?
If this book can teach you only one thing,

it is a thorough understanding of the most im-
portant Python concepts such as indexing and
slicing. I cannot emphasize enough how im-
portant these concepts are for your practical

178 CHAPTER 5. FIFTY PUZZLES

work. The goal of this puzzle is to strengthen
your understanding of these. The puzzle con-
sists of three quick tasks about indexing and
the range function. Repetition is an effective
teacher!

The first line prints the last element of the
range sequence. A short reminder: the upper
bound range parameter is not included in the
sequence. The second line prints the third
element (not the second) of the range sequence
0, 3, 6, 9. Thus, the step size is three as
defined in the last optional range parameter.
The third line prints the second element of
the range sequence -10, -40, -70 with step
size -30.

Many finxters have problems with index-
ing or the range function. One common mis-
take is that they select the wrong element
from the sequence—forgetting that the first

5.30. INDEXING AND RANGE 179

element of any sequence has index 0, not in-
dex 1.

It is the proficient use of the basics that
differentiates excellent from average program-
mers.

The correct solution »

9

6

-40

180 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 46 -9
1000 - 1500 33 -22
1500 - 2000 11 -44

>2000 8 -47

Your new Elo rating »

5.31. MATRIX SEARCH 181

5.31 Searching a Sorted
Matrix

Puzzle 31
#############################
id 112
Puzzle Elo 1353
Correctly solved 41 %
#############################

def matrix_find(matrix, value):
if not matrix or not matrix[0]:

return False

j = len(matrix) - 1
for row in matrix:

while row[j] > value:
j = j - 1
if j == -1:

return False
if row[j] == value:

return True
return False

182 CHAPTER 5. FIFTY PUZZLES

matrix = [[3, 4, 4, 6],
[6, 8, 11, 12],
[6, 8, 11, 15],
[9, 11, 12, 17]]

print(matrix_find(matrix=matrix, value=11))

What is the output of this code?
The puzzles are getting harder now. The

challenge is shifting from understanding syn-
tactical to semantical code snippets and algo-
rithms. If you thoroughly master these types
of code puzzles, you will join the club of ad-
vanced coders. Thus, you open up the oppor-
tunity to work in one of the highest paid job
industries in the world.

This algorithm is a beautiful way to search
a value in a sorted matrix without visiting all
values. In the next paragraph, I describe the
matrix concept and the sorted property.

5.31. MATRIX SEARCH 183

A matrix is a table of values consisting of
rows and columns. This puzzle represents it
as a list of integer lists. Hence, we can access
matrix values with the indexing and slicing
notation. Do you see the importance of under-
standing the basics? The matrix is sorted as
the integers in the rows and columns increase
monotonically with the row and column num-
ber.

The function matrix_find takes a sorted
integer matrix and an integer value. It returns
True if the matrix contains the integer value.
Otherwise, it returns False.

In the first two lines, the algorithm checks
whether the matrix is empty and returns False
if this is the case. Then, the for loop iterates
over rows of the matrix starting with the first
row.

But instead of searching the whole matrix,

184 CHAPTER 5. FIFTY PUZZLES

the algorithm uses a smarter strategy. It skips
whole rows and columns at a time using the
sorted property.

The algorithm starts with the first row
and the last column j = len(matrix) - 1.
Then, it skips one column at-a-time by de-
creasing the parameter j monotonically (j =
j - 1). Why can it skip the whole column?
Because as long as the column value row[j] is
larger than the searched value value, all fol-
lowing elements of column j are larger than
the searched value (sorted property). Thus,
we are sure that our searched value is not in
column j and we can skip this column com-
pletely by decreasing j.

If the column value row[j] is smaller than
the searched value, the algorithm skips this
whole row by going to the next row. Why can
it skip the whole row? Because it currently

5.31. MATRIX SEARCH 185

checks the largest value in the row. If this
value is smaller than the searched value, all
other values are as well.

In summary, the idea of this great algo-
rithm from Keith Schwartz2 is to skip either
one row or one column in each step. Thus, for
a quadratic matrix with n rows and columns,
the algorithm inspects approximately 2n cells.
Note that a naive algorithm would inspect all
n2 cells which is much slower.

The correct solution »

True

2http://www.keithschwarz.com/interesting/code/
matrix-find/MatrixFind.python.html

186 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 46 -9
1000 - 1500 33 -22
1500 - 2000 11 -44

>2000 8 -47

Your new Elo rating »

5.32. MAX PROFIT 187

5.32 Maximum Profit
Algorithm

Puzzle 32
#############################
id 36
Puzzle Elo 1407
Correctly solved 65 %
#############################

def maximum_profit(prices):
'''Maximum profit of a single buying low

and selling high'''↪→

profit = 0
for i, buy_price in enumerate(prices):

sell_price = max(prices[i:])
profit = max(profit, sell_price -

buy_price)↪→
return profit

Ethereum daily prices in Dec 2017 ($)

188 CHAPTER 5. FIFTY PUZZLES

eth_prices = [455, 460, 465, 451, 414, 415,
441]↪→

print(maximum_profit(prices=eth_prices))

What is the output of this code?
This puzzle presents an algorithmic prob-

lem with practical value for stock market anal-
ysis. Suppose you are trading the cryptocur-
rency Ethereum. How much profit can you
make by buying low and selling high based on
historical data?

The function maximum_profit takes as
input a sequence of prices, e.g., a week of
Ethereum prices in December 2017. It returns
the largest possible profit of buying low and
selling high.

The algorithm works as follows. It iterates
over all sequence values: each is a possible
buying point (i.e., buy_price). Note that the

5.32. MAX PROFIT 189

enumerate function returns both the index i
of the next price in the sequence and the price
itself.

Next, the algorithm uses the index i of the
current buying point to get all potential sell-
ing points after buying. We use slicing to get
these, i.e., prices[i:]. The max function
finds the highest selling point. For each buy-
ing/selling pair (buy_price, sell_price),
it calculates the profit as the difference be-
tween the prices at the selling and the buying
points, i.e., sell_price-buy_price. The
variable profit maintains the largest possi-
ble profit: $27 on $414 invested capital.

The correct solution »

27

190 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 36 -19
1500 - 2000 12 -43

>2000 8 -47

Your new Elo rating »

5.33. BUBBLE SORT ALGORITHM 191

5.33 Bubble Sort
Algorithm

Puzzle 33
#############################
id 158
Puzzle Elo 1458
Correctly solved 67 %
#############################

def bubble_sort(lst):
'''Implementation of bubble sort

algorithm'''↪→

for border in range(len(lst)-1, 0, -1):
for i in range(border):

if lst[i] > lst[i + 1]:
lst[i], lst[i + 1] = lst[i +

1], lst[i]↪→
return lst

list_to_sort = [27, 0, 71, 70, 27, 63, 90]
print(bubble_sort(lst=list_to_sort))

192 CHAPTER 5. FIFTY PUZZLES

What is the output of this code?
The bubble sort algorithm works exactly

as its name suggests. It sorts an input list by
treating each element as a bubble that climbs
up the list. Each bubble rises as long as it is
greater than the list elements. If the bubble
element is smaller or equal than a list element
x, the bubble stops rising, and the larger list
element x starts to bubble up.

The precise algorithm works as follows. The
outer index variable border marks the index
after which the right-hand list elements are
already sorted. The inner index variable i
goes from left to right until it reaches the in-
dex variable border. On its way to the right,
it switches two subsequent list elements if the
first element is larger than the second element.
Hence, after the first pass, the largest element
in the list is on the right. As this right-most

5.33. BUBBLE SORT ALGORITHM 193

element is already sorted, we can reduce the
size of the list to be sorted by one—i.e., decre-
ment the variable border. Next, the second
largest element will rise to the top and the
procedure repeats.

Study this basic algorithm carefully. Ev-
ery great coder must know it.

The correct solution »

[0, 27, 27, 63, 70, 71, 90]

194 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 38 -17
1500 - 2000 14 -41

>2000 8 -47

Your new Elo rating »

5.34. JOINING STRINGS 195

5.34 Joining Strings

Puzzle 34
#############################
id 367
Puzzle Elo 1437
Correctly solved 53 %
#############################

def concatenation(*args, sep="/"):
return sep.join(args)

print(concatenation("A", "B", "C", sep=","))

What is the output of this code?
String concatenation is the process of cre-

ating a string by appending string arguments.
The given function takes an arbitrary number
of string arguments as specified by the *args
keyword. The parameter sep declares the
separator string to be used to glue together
two strings. The separator string comes as

196 CHAPTER 5. FIFTY PUZZLES

a keyword argument. The reason is that the
*args argument comprises an arbitrary num-
ber of values. The keyword argument helps
to differentiate whether the last parameter is
part of *args or the sep argument.

The function concatenation is a wrap-
per for the join function to concatenate strings.
The join function is defined in the string ob-
ject sep. It concatenates an arbitrary number
of strings using the separator to glue them
together. Both functions achieve the same
thing, but the first may be more convenient
because the separator is a normal argument.
Yet, you will find yourself using the join func-
tion on a regular basis without writing your
own wrapper functions. So you may as well
learn its proper use now.

5.34. JOINING STRINGS 197

The correct solution »

A,B,C

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 37 -18
1500 - 2000 13 -42

>2000 8 -47

Your new Elo rating »

198 CHAPTER 5. FIFTY PUZZLES

5.35 Arithmetic
Calculations

Puzzle 35
#############################
id 320
Puzzle Elo 1486
Correctly solved 7 %
#############################

x = 5 * 3.8 - 1
print(x)

What is the output of this code?
This puzzle has only one challenge. But

this challenge is so hard that only 7% of all
finxters can overcome it: floating point oper-
ators.

Most finxters believe that the puzzle asks
for the result of the computation here. But
this is a trap! The purpose of solving Python

5.35. ARITHMETIC CALCULATIONS 199

puzzles is to understand code in a precise and
deep manner. Deep understanding tells you
that the float 3.80 causes the interpreter to
perform floating point arithmetic. Thus, the
result is not an integer—i.e., the value 18—
but a float—i.e., the value 18.0.

These kinds of mistakes seem to be negli-
gible but they have important effects on the
correctness of your code base. So if you got
this puzzle wrong, be grateful for the lesson
and go on.

The correct solution »

18.0

200 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 39 -16
1500 - 2000 15 -40

>2000 8 -47

Your new Elo rating »

5.36. BINARY SEARCH 201

5.36 Binary Search

Puzzle 36
#############################
id 159
Puzzle Elo 1492
Correctly solved 33 %
#############################

def bsearch(l, value):
lo, hi = 0, len(l)-1
while lo <= hi:

mid = (lo + hi) // 2
if l[mid] < value:

lo = mid + 1
elif value < l[mid]:

hi = mid - 1
else:

return mid
return -1

l = [0, 1, 2, 3, 4, 5, 6]
x = 6
print(bsearch(l,x))

202 CHAPTER 5. FIFTY PUZZLES

What is the output of this code?
How to find a value in a sorted list? The

naive algorithm compares each element in the
list against the searched value. For example,
consider a list with 1024 elements. The naive
algorithm performs 1024 comparisons in the
worst case.

The function bsearch is a more effective
way to find a value in a sorted list. For n
elements in the list, it needs to perform only in
the order of log(n) comparisons. Hence, a list
with 1024 elements would take Bsearch only
up to log(1024) = 10 comparisons—making
it much faster

Why is Bsearch so fast? Bsearch uses the
property that the list is already sorted. It
checks only the element in the middle posi-
tion between two indices lo and hi. If this
middle element is smaller than the searched

5.36. BINARY SEARCH 203

value, all left-hand elements will be smaller
as well because of the sorted list. The algo-
rithm can skip all left-hand elements by set-
ting the lower index lo to the position right of
the middle element. If this middle element is
larger than the searched value, all right-hand
elements will be larger as well. Hence, we set
the upper index hi to the position left of the
middle element. Only if the middle element
is exactly the same as the searched value, we
return the index of this position. This pro-
cedure is repeated until we find the searched
value or there are no values left. In each loop
iteration, we reduce the search space, i.e., the
number of elements between lo and hi, by
half.

The correct solution »

6

204 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 40 -15
1500 - 2000 15 -40

>2000 8 -47

Your new Elo rating »

5.37. MODIFYING LISTS IN LOOPS 205

5.37 Modifying Lists in
Loops

Puzzle 37
#############################
id 349
Puzzle Elo 1504
Correctly solved 58 %
#############################

words = ['cat', 'mouse', 'dog']
for word in words[:]:

if len(word) > 3:
words.insert(0, word)

print(words[0])

What is the output of this code?
How to modify a sequence while iterating

over it? For example, you want to prepare a
data set of house prices for a machine learning
algorithm to predict the market prices of new
houses. Your goal is to remove the data points

206 CHAPTER 5. FIFTY PUZZLES

with prices lower than $20, 000 to clean the
data of outliers.

This problem is not as simple as remov-
ing elements from a sequence over which you
iterate. Doing this can lead to unspecified be-
havior as explained in the following. Before
entering the for loop, the Python interpreter
creates an iterator object. The iterator ob-
ject provides a method next() returning the
next element in the sequence. To achieve this,
the iterator extracts, at creation time, infor-
mation like the size of the sequence. If you
modify the sequence “on the go”, this infor-
mation becomes invalid. For example, if the
number of elements changes at runtime, the
iterator object may believe it is ready, while
there are still objects in it.

The puzzle presents one solution to this
problem. The code copies the list first and

5.37. MODIFYING LISTS IN LOOPS 207

iterates over the copy. With this method, you
can safely modify the original list as this will
not affect the copy in any way.

So how to copy the sequence? The most
convenient way to achieve this is by using the
slice notation as shown in the puzzle.

The correct solution »

mouse

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 40 -15
1500 - 2000 15 -40

>2000 8 -47

208 CHAPTER 5. FIFTY PUZZLES

Your new Elo rating »

5.38. THE LAMBDA FUNCTION 209

5.38 The Lambda
Function

Puzzle 38
#############################
id 370
Puzzle Elo 1558
Correctly solved 89 %
#############################

def make_incrementor(n):
return lambda x: x + n

f = make_incrementor(42)
print(f(0))
print(f(1))

What is the output of this code?
This puzzle introduces an advanced lan-

guage feature: lambda functions. Lambda
functions are rooted in the mathematical area
of lambda calculus. One of the pioneers of

210 CHAPTER 5. FIFTY PUZZLES

this area was Alonzo Church. He introduced
lambda functions in 1936 even before the ap-
pearance of the first computers.

Lambda functions exist in a wide range of
languages for functional programming. They
are not only at the heart of functional pro-
gramming languages, they are also the basis
of many advanced Python language features.
For example, the modern language Scala for
parallel programming combines traditional lan-
guage elements (e.g., from Java) with func-
tional elements (e.g., lambda functions). So
how do lambda functions work?

A lambda function is an anonymous func-
tion without identifier. After the lambda key-
word, the function takes one or more arbi-
trary arguments. The arguments are comma-
separated and finished by a colon. After the
colon follows a single expression. Yet, this ex-

5.38. THE LAMBDA FUNCTION 211

pression can consist of complex calculations
using the specified argument variables. The
lambda function then returns the result of this
expression. Hence, lambda functions are syn-
tactical shortcuts for a subclass of normal Python
functions.

In the puzzle, the function make_incrementor
creates a lambda function at runtime. The
created lambda function increases an element
x by a fixed value n. For example, the in-
crementor function in the puzzle increments a
value by 42. We assign this function to the
variable f. Then we print the results when
incrementing the values 0 and 1 by the incre-
mentor 42.

The correct solution »

212 CHAPTER 5. FIFTY PUZZLES

42
43

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 42 -13
1500 - 2000 17 -38

>2000 8 -47

Your new Elo rating »

5.39. MULTI-LINE AND NEW-LINE 213

5.39 Multi-line Strings
and the New-line
Character

Puzzle 39
#############################
id 325
Puzzle Elo 1623
Correctly solved 71 %
#############################

print("""
A
B
C
""" == "\nA\nB\nC\n")

What is the output of this code?
What is going on in this puzzle? The basic

idea is to show two different ways of writing
the same multi-line string literal in Python.

214 CHAPTER 5. FIFTY PUZZLES

The first is the direct way to write a multi-
line string in Python: As a string with multi-
ple code lines enclosed by triple-quotes '''...'''
or """...""".

The second is a more concise way to write
the same string. We specify the line breaks
with the new line character '\n'.

These two ways of breaking lines in Python
strings are the basis for advanced features and
code snippets.

The correct solution »

True

5.39. MULTI-LINE AND NEW-LINE 215

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 43 -12
1500 - 2000 20 -35

>2000 9 -46

Your new Elo rating »

216 CHAPTER 5. FIFTY PUZZLES

5.40 Escaping

Puzzle 40
#############################
id 323
Puzzle Elo 1629
Correctly solved 25 %
#############################

print('P"yt\'h"on')

What is the output of this code?
This puzzle introduces several Python lan-

guage features about quotes in string liter-
als. It requires a clear understanding of the
concept of escaping. Escaping is an impor-
tant concept in most programming languages.
You are not an advanced coder without under-
standing at least the basic idea of escaping.

Recap, strings can be enclosed either with

5.40. ESCAPING 217

single quotes '...' or double quotes "...".
These two options are semantically equivalent,
i.e., they do the same thing.

But what happens if you write, say, a small
conversation with direct speech?

"Alice said: "Hey Bob!" and
went on." (wrong)

The double quotes cannot be a part of a
string enclosed in double quotes. Trying this
ends the string prematurely. Here, the best
case is that the interpreter complains about
the strange syntax of the random character
sequence after the premature ending of your
string.

Yet, there is an easy fix. You can avoid this
problem by enclosing the string with single
quotes:

218 CHAPTER 5. FIFTY PUZZLES

'Alice said: "Hey Bob!" and
went on.' (right)

The double quotes can now be part of the
string itself without ending the string sequence.
The opposite also works, i.e., writing a sin-
gle quote within a string enclosed in double
quotes.

So far so good. But there is still one ques-
tion left that is also the main reason why only
25% of finxters can solve this puzzle: escap-
ing. What if you want to put a single quote
within a string enclosed by single quotes?

In the puzzle, we solve this using the es-
cape character: the backslash \. When put
before special characters like the single quote,
it escapes them. In other words, it changes
the meaning of these characters. For example,
the single quote has the meaning of starting

5.40. ESCAPING 219

or ending a string. Only when escaped, the
interpreter changes its meaning to the normal
single quote character.

The correct solution »

P"yt'h"on

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 43 -12
1500 - 2000 21 -34

>2000 9 -46

Your new Elo rating »

220 CHAPTER 5. FIFTY PUZZLES

5.41 Fibonacci

Puzzle 41
#############################
id 359
Puzzle Elo 1661
Correctly solved 60 %
#############################

def fibo(n):
"""Return list containing
Fibonacci series up to n.
"""

result = []
a, b = 0, 1
while a < n:

result.append(a)
a, b = b, a + b

return result

fib100 = fibo(100)
print(fib100[-1] ==

fib100[-2] + fib100[-3])

5.41. FIBONACCI 221

What is the output of this code?
Recap the Fibonacci series is the series

of numbers that arises when repeatedly sum-
ming up the last two numbers starting from 0
and 1. The fibo function in the puzzle calcu-
lates all Fibonacci numbers up to the function
argument n. We use the concise method of it-
erable unpacking to store the value of b in
the variable a and to calculate the new value
of b as the sum of both. We maintain the
whole sequence in the list variable result by
appending the sequence value a to the end of
the list.

The puzzle calculates the Fibonacci sequence
up to 100 and stores the whole list in the vari-
able fib100. But to solve the puzzle, you
do not have to calculate the whole sequence.
The print statement only compares whether
the last element is equal to the sum of the

222 CHAPTER 5. FIFTY PUZZLES

second and third last element in the sequence.
This is true by definition of the Fibonacci se-
ries.

Humans can solve this puzzle easily using
logic and strategic thinking. The Python in-
terpreter, however, must take the brute-force
approach of calculating everything from scratch.
This nicely demonstrates your role as a com-
puter programmer. You are the guiding hand
with unlimited power at your fingertips. But
you must use your power wisely because the
computer will do exactly what you ask it to
do.

The correct solution »

True

5.41. FIBONACCI 223

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 44 -11
1500 - 2000 22 -33

>2000 9 -46

Your new Elo rating »

224 CHAPTER 5. FIFTY PUZZLES

5.42 Quicksort

Puzzle 42
#############################
id 195
Puzzle Elo 1672
Correctly solved 67 %
#############################

def qsort1(L):
if L:

return qsort1([x for x in L[1:] if x
< L[0]]) + L[:1] \↪→

+ qsort1([x for x in L[1:] if
x >= L[0]])↪→

return []

def qsort2(L):
if L:

return L[:1] + qsort2([x for x in
L[1:] if x < L[0]]) \↪→

+ qsort2([x for x in L[1:] if
x >= L[0]])↪→

return []

5.42. QUICKSORT 225

print(qsort1([0, 33, 22]))
print(qsort2([0, 33, 22]))

Which function correctly sorts the
list?

This puzzle introduces a recursive algo-
rithm to sort lists. When executing the func-
tions, you get the following results.

print(qsort1([0,33,22])) –>
output: [0, 22, 33]

print(qsort2([0,33,22])) –>
output: [0, 33, 22]

So, based on this output, the function qsort1
correctly sorts the list. But why? The al-
gorithm is a variant of the popular quicksort
algorithm. Quicksort selects a pivot element
from the list. In the puzzle, it selects the first

226 CHAPTER 5. FIFTY PUZZLES

element of the list, i.e., L[0]. Then, the al-
gorithm moves all elements that are smaller
than the pivot to the left side. Similarly, it
moves elements that are larger or equal than
the pivot to the right side.

This is repeated in a recursive manner for
the left and the right lists. Suppose you create
a new list as follows. You put all elements that
are smaller than the pivot on the left, then
the pivot, then all elements that are larger or
equal the pivot on the right. The resulting
list feels a bit more sorted, right? If the two
sublists were already sorted, the list would be
perfectly sorted. This is where the recursive
call of qsort1 comes into play. It takes over
the problem of sorting each sublist by apply-
ing the same scheme of pivoting and recursion
to the sublist.

In contrast, the qsort2 function appends

5.42. QUICKSORT 227

both sublists to the right of the pivot element.
Hence the list is already unsorted after the
first recursion level.

Solving these kinds of puzzles regularly will
boost your code understanding skills. They
not only train your language understanding
but also your conceptual thinking which is
even more important for coders at any level.

The correct solution »

qsort1

228 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 44 -11
1500 - 2000 23 -32

>2000 9 -46

Your new Elo rating »

5.43. UNPACKING KWARGS 229

5.43 Unpacking
Keyword
Arguments with
Dictionaries

Puzzle 43
#############################
id 369
Puzzle Elo 1673
Correctly solved 30 %
#############################

def func(val1=3, val2=4, val3=6):
return val1 + val2 + val3

values = {"val1":9, "val3":-1}
print(func(**values))

What is the output of this code?
Programming is about using lower-level func-

tionality to create higher-level functionality.

230 CHAPTER 5. FIFTY PUZZLES

In general, any programming language is a
collection of functions that in turn build upon
functions provided by the operating system.
You must master the art of building your own
code with the help of existing functionality.
Do not reinvent the wheel!

Functions are generic code snippets that
can be tailored to your needs via keyword ar-
guments. The puzzle shows a function that
calculates the sum of three keyword arguments.
The keyword arguments are initialized with a
default value in case they are not defined by
the function caller. The puzzle introduces two
concepts: dictionaries and unpacking keyword
arguments.

1) Dictionaries are Python data structures,
defined via the bracket notation {}, that store
key-value pairs. Python dictionaries work like
real-world dictionaries: the keys are the words

5.43. UNPACKING KWARGS 231

and the values are the explanations. You ac-
cess the explanation to a given word via the
index table. Similarly, in a Python dictionary,
you access the values using the method of in-
dexing. The indices (or keys) can be strings,
integers, or any other immutable data type.

2) An interesting twist in the puzzle is to
deliver keyword arguments via a dictionary
using the **-operator. The **-operator un-
packs the key-value pairs in the dictionary and
matches those with the keyword arguments.
As the second keyword argument val2 is not
declared in the dictionary, it is initialized to
its default value.

The correct solution »

12

232 CHAPTER 5. FIFTY PUZZLES

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 44 -11
1500 - 2000 23 -32

>2000 9 -46

Your new Elo rating »

5.44. INFINITY 233

5.44 Infinity

Puzzle 44
#############################
id 356
Puzzle Elo 1701
Correctly solved 40 %
#############################

print("Answer")
while True:

pass
print("42")

What is the output of this code?
The question in this puzzle is whether the

second print statement will ever be executed.
The body of the while loop consists of the
pass statement. This statement tells the in-
terpreter to do nothing. Although the while
loop does nothing, the interpreter is trapped
forever because the while condition is True.

234 CHAPTER 5. FIFTY PUZZLES

Thus, our program wastes scarce CPU cy-
cles until the user interrupts the execution.
Hence, no execution path will execute the sec-
ond print statement. It is interesting that 60%
of finxters get this puzzle wrong.

The correct solution »

Answer

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 45 -10
1500 - 2000 25 -30

>2000 9 -46

Your new Elo rating »

5.45. GRAPH TRAVERSAL 235

5.45 Graph Traversal

Puzzle 45
#############################
id 274
Puzzle Elo 1729
Correctly solved 44 %
#############################

def has_path(graph, v_start, v_end,
path_len=0):↪→
'''Graph has path from v_start to

v_end'''↪→

Traverse each vertex only once
if path_len >= len(graph):

return False

Direct path from v_start to v_end?
if graph[v_start][v_end]:

return True

Indirect path via neighbor v_nbor?
for v_nbor, edge in

enumerate(graph[v_start]):↪→

236 CHAPTER 5. FIFTY PUZZLES

if edge: # between v_start and
v_nbor↪→
if has_path(graph, v_nbor, v_end,

path_len + 1):↪→
return True

return False

The graph represented as adjancy matrix
G = [[1, 1, 0, 0, 0],

[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[1, 0, 0, 1, 1]]

print(has_path(graph=G, v_start=3, v_end=0))

Is there a path between vertices 3
and 0?

A simple and effective way to grow your
computer science skills is to master the basics.
Knowing the basics sets apart the great coders
from the merely intermediate ones. One such
basic area in computer science is graph theory—

5.45. GRAPH TRAVERSAL 237

which we address in this puzzle.
So first things first: what is a graph? You

already know data structures like lists, sets,
and dictionaries. These data structures are
denoted as complex data structures—not be-
cause they’re difficult to understand but be-
cause they build upon other data structures.
A graph is just another complex data struc-
ture for relational data.

Relational data consists of edges and ver-
tices. Each vertex stands in one or more rela-
tions with other vertices. An example for rela-
tional data is the Facebook social graph. Face-
book represents users as vertices and friend-
ship relations as edges. Two users are con-
nected via an edge in the graph if they are
(Facebook) friends.

How to maintain a graph data structure
in the code? The puzzle uses an adjacency

238 CHAPTER 5. FIFTY PUZZLES

matrix as graph data structure G. Each row
i in the matrix stores the out-neighbors of
vertex i. And each column j stores the in-
neighbors of vertex j. Thus, there is an edge
from vertex i to vertex j, if G[i][j]==1.

How to determine whether there is a path
between two vertices?

Function find_path(graph, v_start,
v_end, path_len) checks whether there is
a direct or indirect path between two vertices
v_start and v_end in graph. We know that
there is a direct path between v_start and
v_end if both are already neighbors—or, more
formally, graph[v_start][v_end]==1.

However, even if there is not a direct path,
there could be an indirect path between ver-
tices v_start and v_end. To check this, the
algorithm uses a recursive approach. Specif-
ically, there is an indirect path if a vertex

5.45. GRAPH TRAVERSAL 239

v_nbor exists such that there is a path v_start
→ v_nbor → ...→ v_end.

The variable path_len stores the length
of the current path. We increment it in each
recursion level as the current path length in-
creases by one. Note that all paths with length
≥ n consist of at least n vertices. In other
words, at least one vertex is visited twice and a
cycle exists in this recursion instance. Hence,
we skip recursion for paths with length greater
or equal than the number of vertices in the
graph.

This puzzle asks whether there is a path
between 3 and 0. If you understand what the
code is doing, it suffices to look at the ad-
jacency matrix G. There is a direct path from
vertex 3 to vertices 1 and 2 (and to itself). But
neither vertex 1 nor 2 has any out-neighbors.
Therefore, there is no path from vertex 3 to

240 CHAPTER 5. FIFTY PUZZLES

any other vertex (besides vertices 1 and 2).

The correct solution »

False

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 45 -10
1500 - 2000 26 -29

>2000 9 -46

Your new Elo rating »

5.46. LEXICOGRAPHICAL SORTING 241

5.46 Lexicographical
Sorting

Puzzle 46
#############################
id 371
Puzzle Elo 1748
Correctly solved 44 %
#############################

pairs = [(1, 'one'),
(2, 'two'),
(3, 'three'),
(4, 'four')]

lexicographical sorting (ascending)
pairs.sort(key=lambda pair: pair[1])
print(pairs[0][1])

What is the output of this code?
The high Elo indicates that only experi-

enced Python coders can solve this puzzle.
There are two barriers to overcome.

242 CHAPTER 5. FIFTY PUZZLES

First, the lambda function seems to be an
abstract concept. Yet, it is only old wine in
a new bottle. A lambda function is noth-
ing but an anonymous function with a spe-
cial syntax. The variable name(s) between
the lambda keyword and the colon (:) define
the function arguments. The body after the
colon uses the arguments to define the return
value of the function. In the puzzle, we use
the lambda function as a key for the sorting
function. The key defines that the list should
be sorted by the second value of the tuple,
which is a string.

Second, we are not sorting by ascending
integers, i.e., 1, 2, 3, 4, but by ascending
strings according to their position in the al-
phabet, i.e., 'four', 'one', 'three', and
'two'. So the second tuple element from the
first list element is 'four'.

5.46. LEXICOGRAPHICAL SORTING 243

The correct solution »

four

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 45 -10
1500 - 2000 27 -28

>2000 10 -45

Your new Elo rating »

244 CHAPTER 5. FIFTY PUZZLES

5.47 Chaining of Set
Operations

Puzzle 47
#############################
id 399
Puzzle Elo 1749
Correctly solved 40 %
#############################

popular instagram accounts
(millions followers)
inst = {"@instagram":232,

"@selenagomez":133,
"@victoriassecret":59,
"@cristiano":120,
"@beyonce":111,
"@nike":76}

popular twitter accounts
(millions followers)
twit = {"@cristiano":69,

"@barackobama":100,
"@ladygaga":77,

5.47. CHAINING OF SET OPERATIONS245

"@selenagomez":56,
"@realdonaldtrump":48}

inst_names = set(filter(lambda key:
inst[key]>60, inst.keys()))↪→

twit_names = set(filter(lambda key:
twit[key]>60, twit.keys()))↪→

superstars =
inst_names.intersection(twit_names)↪→

print(list(superstars)[0])

What is the output of this code?
You will use or have already used the con-

cepts introduced in this puzzle. They are el-
ementary pieces of knowledge for any Python
programmer. There are three basic concepts
in the puzzle.

First, we have the two dictionaries map-
ping an account name to the number of fol-
lowers. For example, Cristiano Ronaldo (key:

246 CHAPTER 5. FIFTY PUZZLES

"@cristiano") has 120 million Instagram fol-
lowers. In contrast to lists, dictionaries allow
fast data access. You can retrieve each item
with only one operation without having to it-
erate over the whole data structure. In the
words of a computer scientist: the dictionary
access has constant runtime complexity.

Second, the filter function returns a new
sequence in which each item matches a defined
characteristic. The filter function takes two
arguments. The first argument is a function
that returns a boolean value True or False:
True if a sequence element should be included
and False otherwise. The second argument
is the sequence to be filtered.

Third, intersecting sets s1 and s2 returns
a new set that contains elements that are in
both sets s1 and s2.

The only star that has more than 60 mil-

5.47. CHAINING OF SET OPERATIONS247

lion Instagram AND twitter followers is Cris-
tiano Ronaldo.

The correct solution »

@cristiano

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 45 -10
1500 - 2000 27 -28

>2000 10 -45

Your new Elo rating »

248 CHAPTER 5. FIFTY PUZZLES

5.48 Basic Set
Operations

Puzzle 48
#############################
id 390
Puzzle Elo 1755
Correctly solved 60 %
#############################

words_list = ["bitcoin",
"cryptocurrency",
"wallet"]

crawled_text = '''
Research produced by the University of
Cambridge estimates that in 2017,
there are 2.9 to 5.8 million unique
users using a cryptocurrency wallet,
most of them using bitcoin.
'''

split_text = crawled_text.split()
res1 = True in map(lambda word: word in

split_text, words_list)↪→

5.48. BASIC SET OPERATIONS 249

res2 = any(word in words_list for word in
split_text)↪→

print(res1 == res2)

What is the output of this code?
After executing the code puzzle, both res1

and res2 store whether variable crawled_text
contains a word from the word_list. I ex-
plain both ways to achieve this in the follow-
ing.

res1: The map function checks for each
element word in the word_listwhether word
is an element of the split crawled_text. The
default split function divides the string along
the whitespaces. The result is an iterable with
three booleans—one for each word in the list
of words word_list. Finally, we check whether
one of them is True.

res2: The any function checks whether

250 CHAPTER 5. FIFTY PUZZLES

there is an element in the iterable that is True.
As soon as it finds such a True value, this
function returns True. Note that it is more
efficient to use the any function to do this
instead of performing a list iteration. After
checking for the first word ‘bitcoin’, the func-
tion already returns True.

The correct solution »

True

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 45 -10
1500 - 2000 28 -27

>2000 10 -45

5.48. BASIC SET OPERATIONS 251

Your new Elo rating »

252 CHAPTER 5. FIFTY PUZZLES

5.49 Simple Unicode
Encryption

Puzzle 49
#############################
id 391
Puzzle Elo 1763
Correctly solved 66 %
#############################

def encrypt(text):
encrypted = map(lambda c: chr(ord(c) +

2), text)↪→
return ''.join(encrypted)

def decrypt(text):
decrypted = map(lambda c: chr(ord(c) -

2), text)↪→
return ''.join(decrypted)

s = "xtherussiansarecomingx"

5.49. UNICODE ENCRYPTION 253

print(decrypt(encrypt(encrypt(s))) ==
encrypt(s))↪→

What is the output of this code?
You already know that computers only op-

erate on 0s and 1s. Every single character in
a string is encoded as a sequence of 0s and
1s. Unicode is one such encoding that maps
a bunch of zeros and ones (a binary ordinal
value) to a symbol that you can read (a char-
acter). The Unicode table assigns one binary
or decimal value to each character. For exam-
ple, the Unicode value 41 encodes the value
'A' and the Unicode value 42 the value 'B'.

With Unicode, we create our own secret
language via encryption and decryption func-
tions. The functions encrypt and decrypt
operate on a string literal s1. To encrypt or
decrypt a string, we shift each character by

254 CHAPTER 5. FIFTY PUZZLES

two Unicode positions. The encrypt func-
tion shifts the string to the right, the decrypt
function shifts it to the left.

We use the map function to implement this
shift for each character in the string s1. Using
the built-in function ord(), shifting a charac-
ter is as simple as adding a bias value to the
Unicode value of the respective character.

The result of both encryption and decryp-
tion is a sequence type. Hence, we join the
sequence with the empty string as a separa-
tor to receive the final encrypted or decrypted
string.

By calling the function encrypt() twice,
the string is simply shifted by 2 + 2 = 4 posi-
tions in the Unicode table. Hence, the result
of a double encryption plus a single decryp-
tion is the same as a single decryption, i.e.,
2 + 2− 2 = 2.

5.49. UNICODE ENCRYPTION 255

The correct solution »

True

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 46 -9
1500 - 2000 28 -27

>2000 10 -45

Your new Elo rating »

256 CHAPTER 5. FIFTY PUZZLES

5.50 The Guess and
Check Framework

Puzzle 50
#############################
id 400
Puzzle Elo 1780
Correctly solved 56 %
#############################

import random

def guess(a, b):
return random.randint(a, b)

def check(x, y):
return y ** 2 == x

x = 100
left, right = 0, x
y = guess(left, right)

5.50. THE GUESS AND CHECK
FRAMEWORK 257

while not check(x, y):
y = guess(left, right)

print(y)

What is the output of this code?
The method of guess and check is a good

starting point for designing a new algorithm.
The algorithm is simple, parallelizable to thou-
sands of cores, and well established in theory.
The runtime of the algorithm can often be an-
alyzed statistically.

The idea is to first guess (generate) a pos-
sible solution and then check whether it is
correct (or acceptable). For example, Bitcoin
miners guess the solution to a complex prob-
lem. If they find a solution, a new bitcoin is
created. When generating the solution, it is
common to use randomization. The efficiency
of the algorithm depends on how informed the
guessing is. The better you guess, the more

258 CHAPTER 5. FIFTY PUZZLES

efficient the algorithm becomes.
The puzzle finds an integer solution for

the square root of an input number x. The
guess method generates a random number y
between 0 and x. It is not informed. The
check method checks whether the number y is
the square root.

The correct solution »

10

Add this to your last Elo rating »

Your Elo Correct Incorrect
0 - 500 47 -8

500 - 1000 47 -8
1000 - 1500 46 -9
1500 - 2000 29 -26

>2000 10 -45

5.50. THE GUESS AND CHECK
FRAMEWORK 259

Your new Elo rating »

6

Final Remarks

Congratulations, you made it through 50 code
puzzles and you have significantly improved
your skills in reading and understanding code.
By now, you should have a fair estimate of
your skill level in comparison to others—be
sure to check out Table 3.1 again to get the
respective rank for your Elo rating. This book
is all about pushing you from beginner to in-

261

262 CHAPTER 6. FINAL REMARKS

termediate coding level. In follow-up books,
we address the advanced level with more dif-
ficult puzzles.

Consistent effort and persistence is the key
to success. If you feel that solving code puz-
zles has advanced your skills, make it a daily
habit to solve a Python puzzle and watch the
related video that is given on the Finxter web
app. This habit alone will push your coding
skills through the roof—and provide a com-
fortable living for you and your family in a
highly profitable profession. Build this habit
into your life—e.g., use your morning coffee
break routine—and you will soon become one
of the best programmers in your environment.

Where to go from here? I am publish-
ing a fresh code puzzle every couple of days
on our website finxter.com. All puzzles are

263

available for free. My goal with Finxter is
to make learning to code more efficient, more
individualized to your precise skill level, and
more accessible—that’s why I also post reg-
ular puzzles on our Facebook page. For any
feedback, question, or problem you struggle
and need help with, please send me an email
to info@finxter.com. If you want to grow
your Python skills on autopilot, register for
our free puzzle newsletter at app.finxter.
com/accounts/register/.

Finally, I would like to express my deep
gratitude that you have spent your time solv-
ing code puzzles and reading this book. Above
everything else, I value your time. The ul-
timate goal of any good textbook should be
to save, not take, your time. By working
through this textbook, you have gained in-
sights about your coding skill level and I hope

264 CHAPTER 6. FINAL REMARKS

that you have experienced a positive return
on invested time and money. Now, please keep
investing in yourself and stay active within the
Finxter community.

	Contents
	Introduction
	A Case for Puzzle-based Learning
	Overcome the Knowledge Gap
	Embrace the Eureka Moment
	Divide and Conquer
	Improve From Immediate Feedback
	Measure Your Skills
	Individualized Learning
	Small is Beautiful
	Active Beats Passive Learning
	Make Code a First-class Citizen
	What You See is All There is

	The Elo Rating for Python
	How to Use This Book
	The Ideal Code Puzzle
	How to Exploit the Power of Habits?
	How to Test and Train Your Skills?
	What Can This Book Do For You?

	A Quick Overview of the Python Language
	Keywords
	Basic Data Types
	Complex Data Types
	Classes
	Functions and Tricks

	Fifty Puzzles
	Hello World
	Variables & Float Division
	Basic Arithmetic
	Comments and Strings
	Index and Concatenate Strings
	List Indexing
	Slicing in Strings
	Integer Division
	String Manipulation Operators
	Implicit String Concatenation
	Sum and Range Functions
	Append Function for Lists
	Overshoot Slicing
	Modulo Operator
	Branching
	Negative Indices
	The For Loop
	Functions and Naming
	Concatenating Slices
	Arbitrary Arguments
	Indirect Recursion
	String Slicing
	Slice Assignment
	Default Arguments
	Slicing and the len() Function
	Nested Lists
	Clearing Sublists
	The Fibonacci Series
	Continue and Modulo
	Indexing and Range
	Matrix Search
	Max Profit
	Bubble Sort Algorithm
	Joining Strings
	Arithmetic Calculations
	Binary Search
	Modifying Lists in Loops
	The Lambda Function
	Multi-line and New-line
	Escaping
	Fibonacci
	Quicksort
	Unpacking kwargs
	Infinity
	Graph Traversal
	Lexicographical Sorting
	Chaining of Set Operations
	Basic Set Operations
	Unicode Encryption
	The Guess and Check Framework

	Final Remarks

