

Coffee Break Python
Workbook

127 Python Puzzles to Push You from
Zero to Hero in Your Coffee Breaks

Christian Mayer, Lukas Rieger, and Zohaib Riaz

A puzzle a day to learn, code, and play.

i

Contents

Contents ii

1 Introduction 1

2 A Case for Puzzle-based Learning 4
2.1 Overcome the Knowledge Gap 5
2.2 Embrace the Eureka Moment 6
2.3 Divide and Conquer 7
2.4 Improve From Immediate Feedback . . . 8
2.5 Measure Your Skills 9
2.6 Individualized Learning 11
2.7 Small is Beautiful 11
2.8 Active Beats Passive Learning 13
2.9 Make Code a First-class Citizen 15
2.10 What You See is All There is 17

ii

CONTENTS iii

3 Elo 19
3.1 How to Use This Book 19
3.2 How to Test and Train Your Skills? . . . 21
3.3 What Can This Book Do For You? . . . 25

4 A Quick Overview of the Python Language 29
4.1 Keywords 30
4.2 Basic Data Types 33
4.3 Complex Data Types 36
4.4 Classes 41
4.5 Functions and Tricks 44

5 Puzzles: Basic to Scholar 48
5.1 Printing values 48
5.2 Basics of variables 50
5.3 Getting started with strings 51
5.4 Types of variables I 52
5.5 Types of Variables II 53
5.6 Minimum 54
5.7 String Concatenation 55
5.8 Line Breaks I 56
5.9 Line Breaks II 57
5.10 List Length 58
5.11 Comparison Operators I 59
5.12 Comparison Operators II 60
5.13 Multiple Initializations 61

6 Puzzles: Scholar to Intermediate 63

iv CONTENTS

6.1 Maximum 63
6.2 Memory addresses 64
6.3 Swapping Values 65
6.4 The Boolean Operator AND 67
6.5 The Boolean Operator OR 69
6.6 Boolean Operators 71
6.7 Arithmetic Expressions 73
6.8 Integer Division and Modulo 75
6.9 Building Strings 77
6.10 The len() Function 78
6.11 String Indices 79
6.12 The upper() Function 80
6.13 The lower() Function 81
6.14 Somebody Is Shouting 82
6.15 Counting Characters 83
6.16 String Lengths 84
6.17 Finding Characters in Strings 85
6.18 Not Finding Characters in Strings 86
6.19 Counting Letters 87
6.20 Min() and Max() of a String 88
6.21 Reversed Strings 89
6.22 String Equality 90
6.23 Slicing I 92
6.24 Slicing II 93
6.25 Slicing III 94
6.26 Slicing IV 95
6.27 Slicing V 96

CONTENTS v

6.28 Memory Addresses and Slicing 97
6.29 Accessing List Items I 98
6.30 Accessing List Items II 100
6.31 List as Stack 101
6.32 More String Operations 102
6.33 Checking for Substrings 103
6.34 Stripping String Boundaries 104
6.35 Strings: Stripping vs. Replacement . . . 105
6.36 Gluing Strings Together 106
6.37 The Copy Operation 107
6.38 Growing List Contents I 109
6.39 Growing List Contents II 110
6.40 List Operations I 112
6.41 List Operations II 113
6.42 List Operations III 114
6.43 List Operations IV 115
6.44 List Operations V 116
6.45 List Operations VI 116
6.46 List Operations VII 117
6.47 List Operations VIII 118
6.48 List Operations IX 119
6.49 List Operations X 120
6.50 Lists and the Range Function I 121
6.51 Lists and the Range Function II 122
6.52 Lists and the Range Function III 123
6.53 Python’s Multiple Assignment I 124
6.54 Slice Assignments 125

vi CONTENTS

6.55 Strings and Lists II 126
6.56 String Comparisons 127
6.57 From Booleans to Strings 128
6.58 Boolean Trickery I 129
6.59 Boolean Trickery II 130
6.60 Boolean Trickery III 131
6.61 Looping over Ranges 132
6.62 Reversed Loops 134
6.63 Boolean Trickery IV 135
6.64 Lists and Memory Addresses 136
6.65 List Objects 137
6.66 Boolean Tricks 138
6.67 Complex Numbers 139
6.68 Tuples 140
6.69 Multiple Assignments 141
6.70 Boolean Integer Conversion 142
6.71 The any() Function 143
6.72 The sum() Function 145
6.73 Accessing Complex Numbers 147
6.74 Tuple Confusion 149
6.75 Understanding While ... Else (1/3) . . . 150
6.76 Understanding While ... Else (2/3) . . . 152
6.77 Understanding While ... Else (3/3) . . . 154
6.78 Basic Arithmetic 156
6.79 Dictionary 158
6.80 Dictionary of Dictionaries 160
6.81 Reverse Dictionary Index 162

CONTENTS vii

6.82 Default Arguments 164

7 Puzzles: Intermediate to Professional 167
7.1 Building Strings II 167
7.2 String: Slicing and Indexing 169
7.3 Built-in Python Operations 170
7.4 Strings and Lists I 171
7.5 Formatting Printouts 173
7.6 Floating Point Comparisons 174
7.7 Python’s Multiple Assignment II 176
7.8 The Not-So-Obvious Case 178
7.9 Rounding Values 179
7.10 Initializing Integers 181
7.11 Basic Typing 182
7.12 Short Circuiting 183
7.13 While Arithmetic 186
7.14 The Lambda Function 187
7.15 Zip . 188
7.16 Basic Filtering 190
7.17 List Comprehension 193
7.18 Encryption by Obfuscation 194
7.19 String Dictionary 197
7.20 Functions are Objects 198
7.21 Dictionary of Dictionaries 200
7.22 Sorting Dictionary Keys 202
7.23 Pythonic Loop Iteration 204
7.24 Filtering with List Comprehension 206
7.25 Aggregating with List Comprehension . . 208

viii CONTENTS

7.26 Maximum of Tuples 210
7.27 The Key Argument 213
7.28 Puzzle 123 214
7.29 Set Operations (1/2) 216
7.30 Set Operations (2/2) 217
7.31 Recursive Algorithm 219
7.32 Fibonacci 222

8 Final Remarks 226
Your skill level 226
Where to go from here? 227

9 50 Bonus Workouts 235
9.1 Arithmetic 235
9.2 Whitespace 236
9.3 Modulo 237
9.4 Tuple . 238
9.5 Dictionary 239
9.6 Asterisk 240
9.7 Slicing 1 241
9.8 Slicing 2 242
9.9 Nested Loop 243
9.10 List Arithmetic 244
9.11 Exception 245
9.12 Insert 246
9.13 Sorted Dictionary 247
9.14 Default 248
9.15 Keyword Argument 249

CONTENTS ix

9.16 Global 250
9.17 Flow 1 251
9.18 Flow 2 252
9.19 Enumerate 253
9.20 Reverse 254
9.21 Hierarchical Functions 255
9.22 Sorting++ 256
9.23 Indexing 257
9.24 Count 258
9.25 Power 259
9.26 Lambda 260
9.27 Recursion 261
9.28 Kwargs 262
9.29 Dictionary Magic 263
9.30 Sort Key 264
9.31 Print . 265
9.32 Logic . 266
9.33 Argument Confusion 267
9.34 Pass . 268
9.35 List Magic 269
9.36 Zipzip 270
9.37 Comprehension 271
9.38 Slice Extend 272
9.39 Max . 273
9.40 Zip . 274
9.41 Unpack 275
9.42 Minimax 276

x CONTENTS

9.43 Sort . 277
9.44 Tuple List 278
9.45 While 279
9.46 String Logic 280
9.47 Unorthodox Dict 281
9.48 Count 282
9.49 Cut . 283
9.50 End . 284

1

Introduction

The main driver for mastery is neither a character trait
nor talent. Mastery comes from intense, structured train-
ing. The author Malcolm Gladwell formulated the fa-
mous rule of 10,000 hours after collecting research from
various fields such as psychology and neurological sci-
ence.1 The rule states that if you have average talent,
you will reach mastery in any discipline after invest-
ing approximately 10,000 hours of intense training. Bill
Gates, the founder of Microsoft, reached mastery at a
young age as a result of coding for more than 10,000
hours. He was committed and passionate about coding
and worked long nights to develop his skills. He was
anything but an overnight success.

If you are reading this book, you are an aspiring coder
1Malcolm Gladwell Outliers: The Story of Success

1

2 CHAPTER 1. INTRODUCTION

and seek ways to advance your coding skills. Nurturing
your ambition to learn will pay dividends to you and
your family for as long as you live. It will make you a
respectable member of society. Plus you provide value to
different parts of society such as information technology,
automation, and digitization. Ultimately, it will give
you confidence. So, keeping your ambition to learn is
the one thing you must place above all else.

The Coffee Break Python Workbook is the fourth book in
the series.2 In a way, it’s an extension of its predecessor
Coffee Break Python3—but with 127 brand-new code
puzzles teaching new Python concepts, it stands on its
own.

This book aims to be a stepping stone on your path
to becoming a Python master. It helps you to learn
faster by using the principles of good teaching. It con-
tains 15-25 hours of Python training using one of the
most efficient learning techniques: practice testing. This
technique is guaranteed to improve your ability to read,
write, and understand Python source code.

The idea is that you solve code puzzles. They start sim-
ple and become more and more complex as you read the
book. In essence, you play the Python interpreter and

2The third book is more advanced. It’s about NumPy,
Python’s library for data science and numerical computation:
https://blog.finxter.com/coffee-break-numpy/

3https://blog.finxter.com/coffee-break-python/

https://blog.finxter.com/coffee-break-numpy/
https://blog.finxter.com/coffee-break-python/

3

compute the output of each code snippet in your head.
Then you check whether you were right. Using the ac-
companying feedback and explanations, you will adapt
and improve your coding skills over time. To make this
idea a reality, I developed the online coding academy
Finxter.com. The next section explains the advantages
of the Finxter method of puzzle-based learning. If you
already know about the benefits of puzzle-based learn-
ing from previous books, and you want to dive right into
the puzzles, you can skip the following chapter and start
at Chapter 5.

Finxter.com

2

A Case for Puzzle-based Learning

Definition: A code puzzle is an educational
snippet of source code that teaches a single
computer science concept by activating the
learner’s curiosity and involving them in the
learning process.

Before diving into practical puzzle-solving, let’s first study
10 reasons why puzzle-based learning accelerates your
learning speed and improves retention of the learned ma-
terial. There is robust evidence in psychological science
for each of these reasons. Yet, none of the existing cod-
ing books lift code puzzles to being first-class citizens.
Instead, they mostly focus on one-directional teaching.
This book attempts to change that. In brief, the 10
reasons for puzzle-based learning are:

4

2.1. OVERCOME THE KNOWLEDGE GAP 5

1. Overcome the Knowledge Gap (Section 2.1)

2. Embrace the Eureka Moment (Section 2.2)

3. Divide and Conquer (Section 2.3)

4. Improve From Immediate Feedback (Section 2.4)

5. Measure Your Skills (Section 2.5)

6. Individualized Learning (Section 2.6)

7. Small is Beautiful (Section 2.7)

8. Active Beats Passive Learning (Section 2.8)

9. Make Source Code a First-class Citizen (Section 2.9)

10. What You See is All There is (Section 2.10)

2.1 Overcome the Knowledge
Gap

The great teacher Socrates delivered complex knowledge
by asking a sequence of questions. Each question built
on answers to previous questions provided by the stu-
dent. This teaching is more than 2400 years old and
is still in widespread use today. A good teacher opens
a gap between their knowledge and the learner’s. The
knowledge gap makes the learner realize that they do

6
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

not know the answer to a burning question. This cre-
ates tension in the learner’s mind. To close this gap, the
learner waits for the missing piece of knowledge from the
teacher. Better yet, the learner starts developing their
own answers. The learner craves knowledge.

Code puzzles open an immediate knowledge gap. When
you first look at the code, you do not understand the
meaning of the puzzle. The puzzle’s semantics are hid-
den. But only you can transform the unsolved puzzle
into a solved one.

The problem of many teachers is that they open a knowl-
edge gap that is too large. The learner feels frustrated
because they cannot cross this gap. Rated code puzzles
solve this problem because, by design, they are not too
great a challenge. You must stretch yourself to solve
them, but you can do it if you go all-out.

2.2 Embrace the Eureka Moment

Humans are unique because of their ability to learn.
Fast and thorough learning has always increased our
chances of survival. Thus, evolution created a brilliant
biological reaction to reinforce learning in your body.
Your brain is wired to seek new information; it is wired
to always process data, to always learn.

Did you ever feel the sudden burst of happiness after ex-

2.3. DIVIDE AND CONQUER 7

periencing a eureka moment? Your brain releases endor-
phins, the moment you close a knowledge gap. The in-
stant gratification from learning is highly addictive and
this addiction makes you smarter. Solving puzzles gives
your brain instant gratification. Easy puzzles lead to
harder puzzles, which open large knowledge gaps. Each
one you solve, shortens the knowledge gap and you learn
in the process.

2.3 Divide and Conquer

Learning to code is a complex task. You must learn a
myriad of new concepts and language features. Many
aspiring coders are overwhelmed by this complexity. So
they seek a clear path to mastery.

As any productivity expert will tell you: break a big
goal into a series of smaller steps. Finishing each tiny
step brings you one step closer to your big goal. Divide
and conquer makes you feel in control and takes you one
step closer to mastery.

Code puzzles do this for you. They break up the huge
task of learning to code into a series of smaller steps.
You experience laser focus on one learning task at a
time such as recursion, the for loop, or keyword argu-
ments. Each puzzle is a step toward your bigger goal of
mastering computer science. Keep solving puzzles and

8
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

you keep improving your skills.

2.4 Improve From Immediate
Feedback

As a child, you learned to walk by trial and error—try,
receive feedback, adapt, and repeat. Unconsciously, you
will minimize negative and maximize positive feedback.
You avoid falling because it hurts, and you seek the
approval of your parents. To learn anything, you need
feedback so that you can adapt your actions.

However, an excellent learning environment provides you
not just with feedback but with immediate feedback for
your actions. If you were to slap your friend each time
he lit a cigarette—a not overly drastic measure to save
his life—he would quickly stop smoking. Puzzle-based
learning with this book offers you an environment with
immediate feedback. This makes learning to code easy
and fast. Over time, your brain will absorb the mean-
ing of a code snippet quicker and with higher precision.
Learning this skill will take you to the top 10% of all
coders.

2.5. MEASURE YOUR SKILLS 9

2.5 Measure Your Skills

Think about an experienced Python programmer you
know. How good are their Python skills compared to
yours? On a scale from your grandmother to Bill Gates,
where is that person and where are you? These ques-
tions are difficult to answer because there is no simple
way to measure the skill level of a programmer. This
creates a problem for your learning progress. The con-
cept of being a good programmer has become fuzzy and
diluted. What you can’t measure, you can’t improve.

So what should be your measurable goal when learning
to program? To answer this, let’s travel briefly to the
world of chess. This sport provides an excellent learning
environment for aspiring players. Every player has an
Elo rating number that measures their skill level. You
get an Elo rating when playing against other players—
if you win, your Elo rating increases. Victories against
stronger players lead to a higher increase in the Elo rat-
ing. Every ambitious chess player simply focuses on one
thing: increasing their Elo rating. The ones that man-
age to push their Elo rating very high, earn grandmaster
titles. They become respected among chess players and
in the outside world.

Every chess player dreams of being a grandmaster. The
goal is as measurable as it can be: reaching an Elo of
2400 and master level (see Section 3). Thus, chess is

10
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

a great learning environment as every player is always
aware of their skill level. A player can measure how
their decisions and habits impact their Elo number. Do
they improve when sleeping enough before important
games? When training opening variants? When solving
chess puzzles? What you can measure, you can improve.

The main idea of this book and the associated learning
app Finxter.com is to transfer this method of measur-
ing skills from the chess world to programming. Sup-
pose you want to learn Python. The Finxter website
assigns you a rating that reflects your coding skills. Ev-
ery Python puzzle has a rating number according to its
difficulty level. You ‘play’ against a puzzle at your dif-
ficulty level. The puzzle and you will have a similar Elo
rating so that your learning is personalized. If you solve
the puzzle, your Elo increases and the puzzle’s Elo de-
creases. Otherwise, your Elo decreases and the puzzle’s
Elo increases. Hence, the Elo ratings of the difficult
puzzles increase over time. But only learners with high
Elo ratings will see them. This self-organizing system
ensures that you are always challenged but not over-
whelmed. Plus you constantly receive feedback about
how good your skills are in comparison to others. You
always know exactly where you stand on your path to
mastery.

Finxter.com

2.6. INDIVIDUALIZED LEARNING 11

2.6 Individualized Learning

Today, the education system is built around the idea
of classes and courses. In these environments, all stu-
dents consume the same learning material from the same
teacher applying the same teaching methods.

In the digital era, however, computer servers and in-
telligent machines provide individualized learning with
ease. Puzzle-based learning is a perfect example of auto-
mated, individualized learning. The ideal puzzle stretches
the student’s abilities and is neither boring nor over-
whelming. Finding the perfect learning material for
each learner is an important and challenging problem.
Finxter uses a simple but effective solution to solve this
problem: the Elo rating system. The student solves puz-
zles at their skill level. This book and the book’s web
backend Finxter push teaching towards individualized
learning.

2.7 Small is Beautiful

The 21st century has seen the rise of microcontent. Mi-
crocontent is a short and accessible piece of information
such as the weather forecast, a news headline, or a cat
video. Social media giants like Facebook and Twitter
offer a stream of never-ending microcontent. Microcon-
tent has many benefits: the consumer stays engaged and

12
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

it is easily digestible in a short amount of time. Each
piece of microcontent pushes your knowledge horizon a
bit further. Today, millions of people are addicted to
microcontent.

However, this addiction will become a problem. The
computer science professor, Cal Newport, shows in his
book Deep Work that modern society values deep work
more than shallow work. Deep work is a high-value
activity that needs intense focus and skill. Examples
of deep work are programming, writing, or researching.
On the other hand, shallow work is a low-value activity
that can be done by anybody e.g., posting cat videos to
social media. The demand for deep work has grown with
the rise of the information society. At the same time,
the supply has stayed constant or decreased. One rea-
son for this is the addictiveness of shallow social media.
People that see and understand this trend can bene-
fit tremendously. In a free market, the prices of scarce
and high-demand resources rise. Because of this, sur-
geons, lawyers, and software developers earn $100,000+
per year. Their work cannot easily be replaced or out-
sourced to unskilled workers. If you can do deep work
and focus your attention on a challenging problem, so-
ciety pays you generously.

What if we could marry the concept of microcontent
with deep work? This is the promise of puzzle-based
learning. Finxter offers a stream of self-contained mi-

2.8. ACTIVE BEATS PASSIVE LEARNING 13

crocontent in the form of hundreds of small code puz-
zles. But instead of just being unrelated nonsense, each
puzzle is a tiny stimulus that teaches a coding concept
or language feature. Hence, each puzzle pushes your
knowledge in the same direction.

Puzzle-based learning breaks the big goal of reach mas-
tery level in Python into tiny actionable steps: solve
and understand one code puzzle per day. A clear path
to success.

2.8 Active Beats Passive
Learning

Robust scientific evidence shows that active learning
doubles students’ learning performance. In a study on
this matter, test scores of active learners improved by
more than a grade compared to their passive learning
counterparts.1 Not using active learning techniques wastes
your time and hinders you if you want to reach your full
potential. Switching to active learning is a simple tweak
that instantly improves your performance.

How does active learning work? Active learning re-
quires the student to interact with the material, rather

1 https://en.wikipedia.org/wiki/Active_learning#
Research_evidence

https://en.wikipedia.org/wiki/Active_learning#Research_evidence
https://en.wikipedia.org/wiki/Active_learning#Research_evidence

14
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

than simply consume it. It is student-centric rather
than teacher-centric. Great active learning techniques
are asking and answering questions, self-testing, teach-
ing, and summarizing. A popular study shows that one
of the best learning techniques is practice testing.2 In
this technique, you test your knowledge before you have
learned everything. Rather than learning by doing, it’s
learning by testing.

The study argues that students must feel safe during
these tests. Therefore, the tests must be low-stakes, i.e.,
students have little to lose. After the test, students get
feedback on how well they did. The study shows that
practice testing boosts long-term retention by almost a
factor of 10. So, solving a daily code puzzle is not just
another learning technique—it is one of the best.

Although active learning is twice as effective, most books
focus on passive learning. The author delivers informa-
tion; the student passively consumes the information.
Some programming books include active learning ele-
ments by adding tests or by asking the reader to try
out the code examples. Yet, I’ve always found this im-
practical when reading on the train, bus or in bed. If
these active elements drop out, learning becomes 100%
passive again.

2 http://journals.sagepub.com/doi/abs/10.1177/
1529100612453266

http://journals.sagepub.com/doi/abs/10.1177/1529100612453266
http://journals.sagepub.com/doi/abs/10.1177/1529100612453266

2.9. MAKE CODE A FIRST-CLASS CITIZEN 15

Fixing this mismatch between research and common
practice drove me to write this book about puzzle-based
learning. In contrast to other books, this book makes
active learning a first-class citizen. Solving code puzzles
is an inherent active learning technique. You must fig-
ure out the solution yourself for every single puzzle. The
teacher is as much in the background as possible—they
only explain the correct solution if you couldn’t work it
out yourself. But before telling you the correct solution,
your knowledge gap is already ripped wide open. Thus,
you are mentally ready to digest new material.

2.9 Make Code a First-class
Citizen

Each chess grandmaster has spent tens of thousands of
hours looking at a nearly infinite number of chess po-
sitions. Over time, they develop a powerful skill: the
intuition of the expert. When presented with a new
position, they can name a small number of strong can-
didate moves within seconds. They operate on a higher
level than normal people. For normal people, the posi-
tion of a single chess piece is one chunk of information.
Hence they can only memorize the position of about
six chess pieces. But chess grandmasters view a whole
position or a sequence of moves as a single chunk of in-

16
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

formation. This extensive training and experience has
burned strong patterns into their biological neural net-
works. Their brain can hold much more information—a
result of the good learning environment they have put
themselves in.

Chess exemplifies principles of good learning that are
valid in any field you want to master.

First, transform the object you want to learn into a
stimulus and then look at that it over and over. In
chess, study as many chess positions as you can. In
math, read mathematical papers containing theorems
and proofs. In coding, expose yourself to lots of code.

Second, seek feedback. Immediate feedback is better
than delayed feedback. However, delayed feedback is
still better than no feedback at all.

Third, take your time to learn and understand thor-
oughly. Although it is possible to learn on-the-go, you
will cut corners. The person who prepares beforehand
always has an edge. In the world of coding, some peo-
ple recommend learning by coding practical projects and
doing nothing more. Chess grandmasters, sports stars,
and intelligent machines do not follow this advice. They
learn by practicing small parts again and again until
they have mastered them. Then they move on to more
complex bits.

Puzzle-based learning is code-centric. You will find your-

2.10. WHAT YOU SEE IS ALL THERE IS 17

self staring at the code for a long time until the insight
strikes. This creates new synapses in your brain that
help you understand, write, and read code fast. Placing
code in the center of the learning process means you will
develop an intuition as powerful as the experts. Maxi-
mize the learning time you spend looking at code rather
than other things.

2.10 What You See is All There
is

My professor of theoretical computer science used to tell
us that if we stare long enough at a proof, the meaning
will transfer to our brains by osmosis. This fosters deep
thinking, a state of mind where learning is more produc-
tive. In my experience, his staring method works—but
only if the proof contains everything you need to know
to solve it. It must be self-contained.

A good code puzzle beyond the most basic level is self-
contained. You can solve it by staring at it until your
mind follows your eyes, i.e., your mind develops a solu-
tion from rational thinking. There is no need to look
things up. If you are a great programmer, you will find
the solution quickly. If not, it will take more time but
you will still find the solution—it is just more challeng-
ing.

18
CHAPTER 2. A CASE FOR PUZZLE-BASED

LEARNING

My gold standard was to design each puzzle such that
they are (mostly) self-contained. However, to ensure you
learn new concepts, puzzles must introduce new syntac-
tical language elements as well. Even if the syntax in a
puzzle challenges you, develop your own solutions based
on your imperfect knowledge. This probabilistic think-
ing opens the knowledge gap and prepares your brain
to receive and digest the explained solution. After all,
your goal is long-term retention of the material.

3

The Elo Rating for Python

Pick any sport you’ve always loved to play. How good
are you compared to others? The Elo rating answers this
question with surprising accuracy. It assigns a number
to each player that represents their skill in the sport.
The higher the Elo number, the better the player.

Table 3.1 shows the ranks for each Elo rating level. The
table is an opportunity for you to estimate your Python
skill level. In the following, I’ll describe how you can
use this book to test your Python skills.

3.1 How to Use This Book

This book contains 127 code puzzles and explanations
to test and train your Python skills. The puzzles start

19

20 CHAPTER 3. ELO

Elo rating Rank

2500 World Class
2400-2500 Grandmaster
2300-2400 International Master
2200-2300 Master
2100-2200 National Master
2000-2100 Master Candidate
1900-2000 Authority
1800-1900 Professional
1700-1800 Expert
1600-1700 Experienced Intermediate
1500-1600 Intermediate
1400-1500 Experienced Learner
1300-1400 Learner
1200-1300 Scholar
1100-1200 Autodidact
1000-1100 Beginner
0-1000 Basic Knowledge

Table 3.1: Elo ratings and skill levels.

3.2. HOW TO TEST AND TRAIN YOUR SKILLS?21

from beginner-level and become gradually harder. At
the end, you will be an intermediate-level coder. The
Elo ranges from 987 to 1899 points (between beginner
and professional level in the table). Follow-up books
cover more advanced levels. This book is perfect for
you if you are between the beginner and intermediate
levels. Yet, even experts will improve their speed of
code understanding if they follow the outlined strategy.

3.2 How to Test and Train Your
Skills?

I recommend solving at least one code puzzle every day,
e.g. as you drink your morning coffee. Then spend the
rest of your learning time on real projects that matter to
you. The puzzles guarantee that your skills will improve
over time and the real project brings you results.

To test your Python skills, do the following:

1. Track your Elo rating as you read the book and
solve the code puzzles. Write your current Elo
rating in the book. Start with an initial rating of
1000 if you are a beginner, 1500 if you are an inter-
mediate, and 2000 if you are an advanced Python
programmer. Of course, if you already have an
online rating on finxter.com, start with that.

finxter.com

22 CHAPTER 3. ELO

Figure 3.2 shows different examples of how your
Elo will change while working through the book.
Two factors impact the final rating: how you se-
lect your initial rating and how good you perform
(the latter being more important).

2. If your solution is correct, add the Elo points given
with the puzzle. Otherwise, subtract the points
from your current Elo number.

Solve the puzzles sequentially because they build upon
each other. Advanced readers can solve them in the
sequence they wish—the Elo rating will work just as
well.

Use the following training plan to develop a strong learn-
ing habit with puzzle-based learning.

1. Choose or create a daily trigger after which you’ll
solve code puzzles for 10 minutes. For example,
decide on your Coffee Break Python. Or solve code
puzzles as you brush your teeth or sit on the train
to work, university, or school.

2. Scan over the puzzle and ask yourself: what is the
unique idea of this puzzle?

3. Dive deeply into the code. Try to understand the
purpose of each symbol, even if it seems trivial at

3.2. HOW TO TEST AND TRAIN YOUR SKILLS?23

0 20 40 60 80 100 120
Number of Solved Puzzles

0

500

1000

1500

2000

2500

Yo
ur

 E
lo

Grand masterIntermediate, 20% correct
Intermediate, 60% correct
Intermediate, 80% correct

Figure 3.1: This is an example of how your Elo rating
could change while working through the 127 puzzles.
Your final Elo rating depends on where you started and
(to a larger extent) on the percentage of correctly solved
puzzles.

24 CHAPTER 3. ELO

first. Avoid being shallow and lazy. Instead, solve
each puzzle thoroughly and take your time. It may
seem counter intuitive at first but to learn faster,
you must take your time and allow yourself to dig
deep. There is no shortcut.

4. Stay objective when evaluating your solution—we
all tend to lie to ourselves.

5. Look up the solution and read the explanation
with care. Do you understand every aspect of the
code? Write any questions down that you have
and look up the answers later. Or send them to
me (admin@finxter.com). I will do everything I
can to come up with a good explanation.

6. If your solution was 100% correct—including whites-
paces, data types, and formatting of the output—
you get the Elo points for this puzzle. Otherwise,
your solution was wrong and you should subtract
Elo points. This rule is strict because code is ei-
ther right or wrong. If you miss some whitespace
in the ’real world’, you may get an error. So make
sure you don’t forget it in training.

As you follow this simple training plan, your ability to
quickly understand source code will improve. In the
long term, this will have a huge impact on your career,
income, and work satisfaction. You do not have to invest

admin@finxter.com

3.3. WHAT CAN THIS BOOK DO FOR YOU? 25

much time because the training plan requires only 10–
20 minutes per day. But you must be persistent with
your effort. If you get off track, get right back on the
next day. When you run out of code puzzles, feel free
to checkout Finxter.com. It has more than 300 hand-
crafted code puzzles and I regularly publish new ones.

3.3 What Can This Book Do For
You?

Before we dive into puzzle-solving, let me address some
common misconceptions about this book.

The puzzles are too easy/too hard. This book is for you if
you already have some coding experience. Your Python
skill level ranges from beginner to intermediate. If you
are already an advanced coder, this book is for you too—
if you read it differently. Simply measure the time you
need to solve the puzzles and limit your solution time to
10–20 seconds. This introduces an additional challenge
for solving the puzzles: time pressure. Solving puzzles
under time pressure sharpens your rapid code under-
standing skills even more. Eventually, you will feel that
your coding intuition has improved. If the puzzles are
too hard, great. Your knowledge gap must be open be-
fore you can effectively absorb information. Just take
your time to thoroughly understand every bit of new

Finxter.com

26 CHAPTER 3. ELO

information. Study the cheat sheets in Chapter 4 prop-
erly.

Why is this book not conventionally structured by topic?
The puzzles are sorted by Elo and not structured by
topic. Puzzles with a small Elo rating are easier and
more fundamental. Puzzles with a higher Elo rating are
harder. To solve them, you need to combine the funda-
mental lessons from the easier puzzles. Ordering puzzles
by difficulty has many advantages one being that you
can solve puzzles at your skill level. As you get better,
the puzzles get harder. Finally, ordering by complex-
ity allows us to combine many topics in a single puzzle.
For example, a Python one-liner may use two topics:
list comprehension and lambda functions.

Learning to code is best done via coding projects. I agree
but it’s only part of the truth. Yes, you can improve
your skills by diving into practical projects. But, as in
every other discipline, your skills will quickly hit an up-
per limit. These limits come from a lack of understand-
ing of the basic concepts. You cannot understand high
level knowledge without first understanding the basic
building blocks. Have you ever used machine learning
techniques in your work? Without theoretical founda-
tions, you are doomed. Theory pushes your ceiling up-
wards and gets rid of the limitations that hold you back.

Abraham Lincoln said: “Give me six hours to chop down

3.3. WHAT CAN THIS BOOK DO FOR YOU? 27

a tree and I will spend the first four sharpening the ax.”
Do not fool yourself into the belief that just doing it
is the most effective road to reach any goal. You must
constantly sharpen the saw to be successful in any disci-
pline. Learning to code is best done via practical coding
and investing time into your personal growth. Millions
of computer scientists have an academic background.
They know that solving hundreds or thousands of toy
examples in their studies built a strong foundation.

How am I supposed to solve this puzzle if I do not know
the meaning of this specific Python language feature?
Guess it! Python is an intuitive language. Think about
potential meanings. Solve the puzzle for each of them—
a good exercise for your brain. The more you work on
the puzzle, even with imperfect knowledge, the better
you prepare your brain to absorb the puzzle’s explana-
tion.

How does this book interplay with the puzzles at Finxter.
com ? My goal is to remove barriers to learning Python.
Thus, many puzzles are available for free online. This
book is based on some puzzles available at Finxter, but
it extends them with more detailed and structured in-
formation. Nevertheless, if you don’t like reading books,
feel free to check out the website.

Anyway, why do some people thrive in their fields and
become valued experts while others stagnate? They

Finxter.com
Finxter.com

28 CHAPTER 3. ELO

read books in their field. They increase their value to the
marketplace by feeding themselves valuable information.
Over time, they have a huge advantage over their peers.
They get opportunities to develop themselves even fur-
ther. They enjoy much higher job satisfaction and life
quality. Belonging to the top ten percent of your field
yields hundreds of thousands of dollars throughout your
career. However, there is a price to pay to unlock the
gates of this world: invest in books and personal devel-
opment. The more time and money you spend on books,
the more valuable you become to the marketplace!

The Elo-based rating is not accurate.

The Elo rating will get more accurate the more puzzles
you solve. Although only an estimate, your Elo rating
is an objective measure to compare your skills with the
skills of others. Several Finxter users have reported that
the rating is fair and surprisingly accurate. It provides
a good indication of where one stands in comparison
to other Python coders. If you feel the rating is not
accurate, ask yourself whether you are objective. If you
think you are, please let me know so that I can improve
this book and the Finxter back-end.

4

A Quick Overview of the Python
Language

Before diving into the puzzles, work through the fol-
lowing five cheat sheets. By reading htem, you’ll learn
80% of Python’s language features in 20% of the time it
takes most people. They are definitely worth your time
investment.

Read them thoroughly. If you try to understand every
single line of code, you will catapult your skills to the
next level. Most Python coders don’t invest enough
time into learning the basics such as the core language
features, data types, and language tricks. Be different
and absorb the examples in each cheat sheet. Open up
your path to become a master coder and join the top
ten percent of coders.

29

30
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

You can download all five cheat sheets as concise PDFs.
Post them to your wall until you know them by heart:
https://blog.finxter.com/subscribe/.

4.1 Keywords
All programming languages reserve certain words to have
a special meaning. These words are called keywords.
With keywords, you can issue commands to the com-
piler or interpreter. They let you tell the computer what
to do. Without keywords, the computer would not be
able to understand the seemingly random text in your
code file. Note that, as keywords are reserved words,
you cannot use them as variable names.

The most important Python keywords are:

False True and or
not break continue class
def if elif else
for while in is
None lambda return

The next cheat sheet introduces the most important key-
words in Python. In each row, you’ll find the keyword,
a short description, and an example of its usage.

https://blog.finxter.com/subscribe/

4.1. KEYWORDS 31

Keyword Description Code example
False​,
True

Data values from the data
type Boolean

False​ == (​1 ​> ​2​)
True​ == (​2 ​> ​1​)

and​, ​or​,
not

Logical operators:
(x ​and​ y)​ → both x and y
must be True
(x ​or​ y)​ → either x or y
must be True
(​not​ x)​ → x must be false

x, y = ​True​, ​False
(x ​or​ y) == ​True

True

(x ​and​ y) == ​False

True

(​not​ y) == ​True

True

break Ends loop prematurely while​(​True​):
 ​break​ ​# no infinite loop
print(​"hello world"​)

c​ontinue Finishes current loop
iteration

while​(​True​):
 ​continue
 print(​"43"​) ​# dead code

class

def

Defines a new class → a
real-world concept (object
oriented programming)

Defines a new function or
class method. For latter, first
parameter ​self ​points to
the class object. When
calling class method, first
parameter is implicit.

class​ ​Beer​:

 ​def​ ​__init__​(self)​:
 self.content = ​1.0

 ​def​ ​drink​(self)​:
 self.content = ​0.0

constructor creates class

becks = Beer()

empty beer bottle

becks.drink()

if​,
elif​,

Conditional program
execution: program starts

x = int(input(​"your val: "​))
if​ x > ​3​: print(​"Big"​)

32
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

else with “if” branch, tries “elif”
branches, and finishes with
“else” branch (until one
evaluates to True).

elif​ x == ​3​: print(​"Medium"​)
else​: print(​"Small"​)

for​,
while

For loop

declaration

for​ i ​in​ [​0​,​1​,​2​]:
 print(i)

While loop - same

semantics

j = ​0
while​ j < ​3​:
 print(j)

 j = j + ​1

in Checks whether element is
in sequence

42​ ​in​ [​2​, ​39​, ​42​] ​# True

is Checks whether both
elements point to the same
object

y = x = 3

x​ ​is​ ​y​ ​# True
[​3​] ​is​ [​3​] ​# False

None Empty value constant def​ ​f​()​:
 x = ​2
f() ​is​ ​None​ ​# True

lambda Function with no name
(anonymous)

(lambda​ x: x + ​3)(3)​ ​#
returns 6

return Terminates function
execution and passes the
execution flow to the caller.
An optional value after the
return keyword specifies the
result.

def​ ​incrementor​(x)​:
 ​return​ x + ​1
incrementor(​4​) ​# returns 5

4.2. BASIC DATA TYPES 33

4.2 Basic Data Types
Many programmers call basic data types primitive data
types. They provide the primitives on which the higher-
level concepts are built. A house is built from bricks.
Likewise, a complex data type is built from basic data
types. I introduce basic data types in the next cheat
sheet and complex data types in Section 4.3.

Specifically, the next cheat sheet explains the three most
important (classes of) basic data types in Python. First,
the boolean data type encodes truth values. For ex-
ample, the expression 42 > 3 evaluates to True and
1 ∈ {2, 4, 6} evaluates to False. Second, the numer-
ical types integer, float, and complex numbers encode
integer values, floating point values and complex val-
ues respectively. For example, 41 is an integer value,
41.99 is a float value, and 41.999 + 0.1 ∗ i is a com-
plex value (the first part being the real number and the
second the imaginary number). Third, the string data
type encodes textual data. An example of a string value
is the Shakespeare quote ‘Give every man thy ear,
but few thy voice’.

34
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

Data Type + Description Example

Boolean
The Boolean data type is a
truth value, either ​True​ ​or
False​.

These are important Boolean
operators ordered by priority
(from highest to lowest):
not​ x​ →
“if x is False, then x, else y”

x ​and​ y​ →
“if x is False, then x, else y”

x ​or​ y ​ →
“if x is False, then y, else x”

x, y = ​True​, ​False
print(x ​and​ ​not​ y) ​# True
print(​not​ x ​and​ y ​or​ x) ​# True

All of those evaluate to False

if​ (​None​ ​or​ ​0​ ​or​ ​0.0​ ​or​ ​''​ ​or​ []
 ​or​ {} ​or​ set()):
 print(​"Dead code"​)

All of those evaluate to True

if​ (​1​ < ​2​ ​and​ ​3​ > ​2​ ​and​ ​2​ >=​2
 ​and​ ​1​ == ​1​ ​and​ ​1​ != ​0​):
 print(​"True"​)

Integer
An integer is a positive or
negative number without
floating point (e.g. ​3​).

Float
A float is a positive or
negative number with floating
point precision (e.g.
3.14159265359​).

The ‘​//​’ operator performs
integer division. The result is
an integer value that is
rounded towards the smaller
integer number (e.g. ​3​ // ​2
== ​1​).

Arithmetic Operations

x, y = ​3​, ​2
print(x + y) ​# = 5
print(x - y) ​# = 1
print(x * y) ​# = 6
print(x / y) ​# = 1.5
print(x // y) ​# = 1
print(x % y) ​# = 1s
print(-x) ​# = -3
print(abs(-x)) ​# = 3
print(int(​3.9​)) ​# = 3
print(float(​3​)) ​# = 3.0
print(x ** y) ​# = 9

4.2. BASIC DATA TYPES 35

String
Python Strings are sequences
of characters. They are
immutable which means that
you can not alter the
characters without creating a
new string.

The four main ways to create
strings are the following.

1. Single quotes
'Yes'

2. Double quotes
"Yes"

3. Triple quotes (multi-line)
"""Yes

We Can"""

4. String method
str(​5​) == ​'5'​ ​# True
5. Concatenation
"Ma"​ + ​"hatma"​ ​#
'Mahatma'

These are whitespace
characters in strings.

● Newline ​\n
● Space ​\s
● Tab ​\t

Indexing & Slicing

s = ​"The youngest pope was 11 years
old"

print(s[​0​]) ​# 'T'
print(s[​1​:​3​]) ​# 'he'
print(s[​-3​:​-1​]) ​# 'ol'
print(s[​-3​:]) ​# 'old'
x = s.split() ​# string array
print(x[​-3​] + ​" "​ + x[​-1​] + ​" "​ +
x[​2​] + ​"s"​) ​# '11 old popes'

Key String Methods

y = ​" This is lazy\t\n"
print(y.strip()) ​# 'This is lazy'
print(​"DrDre"​.lower()) ​# 'drdre'
print(​"stop"​.upper()) ​# 'STOP'
s = ​"smartphone"
print(s.startswith(​"smart"​)) ​# True
print(s.endswith(​"phone"​)) ​# True
print(​"another"​.find(​"other"​)) ​# 2
print(​"cheat"​.replace(​"ch"​, ​"m"​))
'meat'

print(​','​.join([​"F"​, ​"B"​, ​"I"​]))
'F,B,I'

print(len(​"Rumpelstiltskin"​)) ​# 15
print(​"ear"​ ​in​ ​"earth"​) ​# True

36
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

4.3 Complex Data Types

In the previous section, you learned about basic data
types. These are the building blocks for complex data
types. Think of complex data types as containers—each
holds a multitude of (potentially different) data types.

Specifically, the complex data types in this cheat sheet
are lists, sets, and dictionaries. A list is an ordered se-
quence of data values (that can be either basic or com-
plex data types). An example for such an ordered se-
quence is the list of all US presidents:
['Washington',
'Adams',
'Jefferson', ...,
'Obama',
'Trump'].

In contrast, a set is an unordered sequence of data val-
ues:
{'Trump',
'Washington',
'Jefferson', ...,
'Obama'}.

Expressing the US presidents as a set loses all ordering
information—it’s not a sequence anymore. But sets do
have an advantage over lists. Retrieving information
about particular data values in the set is much faster.
For instance, checking whether the string 'Obama' is in

4.3. COMPLEX DATA TYPES 37

the set of US presidents is blazingly fast even for large
sets. I provide the most important methods and ideas
for complex data types in the following cheat sheet.

38
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

Complex Data Type +
Description

Example

List
A container data type
that stores a sequence of
elements. Unlike strings,
lists are mutable:
modification possible.

l = [​1​, ​2​, ​2​]
print(len(l)) ​# 3

Adding elements
to a list with append,
insert, or list
concatenation. The
append operation is
fastest.

[​1​, ​2​, ​2​].append(​4​) ​# [1, 2, 2, 4]
[​1​, ​2​, ​4​].insert(​2​,​2​) ​# [1, 2, 2, 4]
[​1​, ​2​, ​2​] + [​4​] ​# [1, 2, 2, 4]

Removing elements
is slower (find it first).

[​1​, ​2​, ​2​, ​4​].remove(​1​) ​# [2, 2, 4]

Reversing
the order of elements.

[​1​, ​2​, ​3​].reverse() ​# [3, 2, 1]

Sorting a list
Slow for large lists: O(n
log n), n list elements.

[​2​, ​4​, ​2​].sort() ​# [2, 2, 4]

Indexing
Finds index of the first
occurence of an element
in the list. Is slow when
traversing the whole list.

[​2​, ​2​, ​4​].index(​2​)
index of element 4 is "0"

[​2​, ​2​, ​4​].index(​2​,​1​)
index of el. 2 after pos 1 is "1"

Stack
Python lists can be used
intuitively as stack via
the two list operations
append() and pop().

stack = [3]

stack.append(​42​) ​# [3, 42]
stack.pop() ​# 42 (stack: [3])
stack.pop() ​# 3 (stack: []​)

Set basket = {​'apple'​, ​'eggs'​,
 ​'banana'​, ​'orange'​}

4.3. COMPLEX DATA TYPES 39

Unordered collection of
unique elements
(​at-most-once​).

same = set([​'apple'​, ​'eggs'​,
 ​'banana'​, ​'orange'​])
print(basket == same) ​# True

Dictionary
A useful data structure
for storing (key, value)
pairs.

calories = {​'apple'​ : ​52​,
 'banana'​ : ​89​,
 'choco'​ : ​546​}

Reading and writing
Read and write elements
by specifying the key
within the brackets. Use
the keys() and values()
functions to access all
keys and values of the
dictionary.

c = calories

print(c[​'apple'​] < c[​'choco'​]) ​# True
c[​'cappu'​] = ​74
print(c[​'banana'​] < c[​'cappu'​]) ​# False
print(​'apple'​ ​in​ c.keys()) ​# True
print(​52​ ​in​ c.values()) ​# True

Dictionary Looping
You can access the (key,
value) pairs of a
dictionary with the
items()​ method.

for​ k, v ​in​ calories.items():
print(k) ​if​ v > ​500​ ​else​ ​None

'chocolate'

Membership operator
Check with the keyword
in​ ​whether the set, list,
or dictionary contains an
element. Set
containment is faster
than list containment.

basket = {​'apple'​, ​'eggs'​,
 'banana'​, ​'orange'​}
print(​'eggs'​ ​in​ basket} ​# True
print(​'mushroom'​ ​in​ basket} ​# False

List and Set
Comprehension
List comprehension is
the concise Python way
to create lists. Use
brackets plus an
expression, followed by
a for clause. Close with

List comprehension

[(​'Hi '​ + x) ​for​ x ​in​ [​'Alice'​, ​'Bob'​,
'Pete'​]]
['Hi Alice', 'Hi Bob', 'Hi Pete']

[x * y ​for​ x ​in​ range(​3​) ​for​ y ​in
range(​3​) ​if​ x>y]
[0, 0, 2]

40
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

zero or more for or if
clauses.

Set comprehension is
similar to list
comprehension.

Set comprehension

squares = { x**​2​ ​for​ x ​in​ [​0​,​2​,​4​] ​if​ x
< ​4​ } ​# {0, 4}

4.4. CLASSES 41

4.4 Classes
Object-oriented programming (OOP) is an influential,
powerful, and expressive programming paradigm. The
programmer thinks in terms of classes and objects. A
class is a blueprint for an object. An object contains
specific data and provides the functionality specified in
the class.

Say, you are programming a game to build, simulate,
and grow cities. In object-oriented programming, you
would represent all things (buildings, persons, or cars)
as objects. For example, each building object stores
data such as name, size, and price tag. Additionally,
each building provides a defined functionality such as
calculate_monthly_earnings(). This simplifies the
reading and understanding of your code for other pro-
grammers. Even more important, you can now easily
divide responsibilities between programmers. For ex-
ample, you code the buildings and your colleague codes
the moving cars.

In short, object-oriented programming helps you to write
readable code. By learning it, your ability to collabo-
rate with others on complex problems improves. The
next cheat sheet introduces the most basic concepts.

42
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

4.4. CLASSES 43

44
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

4.5 Functions and Tricks
Python is full of extra tricks and special functionality.
Learning these tricks makes you more efficient and pro-
ductive. But more importantly, these tricks make pro-
gramming easy and fun. In the next cheat sheet, I show
you the most important ones.

4.5. FUNCTIONS AND TRICKS 45

ADVANCED FUNCTIONS

map(func, iter)
Executes the function on all elements of the iterable. Example:
list(map(​lambda​ x: x[​0​], [​'red'​, ​'green'​, ​'blue'​]))
Result: ['r', 'g', 'b']

map(func, i1, ..., ik)

Executes the function on all k elements of the k iterables. Example:
list(map(​lambda​ x, y: str(x) + ​' '​ + y + ​'s'​ , [​0​, ​2​, ​2​],
[​'apple'​, ​'orange'​, ​'banana'​]))
Result: ['0 apples', '2 oranges', '2 bananas']

string.join(iter)

Concatenates iterable elements separated by ​string​. Example:
' marries '​.join(list([​'Alice'​, ​'Bob'​]))
Result: 'Alice marries Bob'

filter(func, iterable)

Filters out elements in iterable for which function returns False (or 0). Example:
list(filter(​lambda​ x: ​True​ ​if​ x>​17​ ​else​ ​False​, [​1​, ​15​, ​17​,
18​])) ​# Result: [18]

string.strip()

Removes leading and trailing whitespaces of string. Example:
print(​"\n \t 42 \t "​.strip()) ​# Result: 42

sorted(iter)

Sorts iterable in ascending order. Example:
sorted([​8​, ​3​, ​2​, ​42​, ​5​]) ​# Result: [2, 3, 5, 8, 42]

sorted(iter, key=key)

Sorts according to the key function in ascending order. Example:
sorted([​8​, ​3​, ​2​, ​42​, ​5​], key=​lambda​ x: ​0​ ​if​ x==​42​ ​else​ x)
[42, 2, 3, 5, 8]

help(func)

Returns documentation of func. Example:

46
CHAPTER 4. A QUICK OVERVIEW OF THE

PYTHON LANGUAGE

help(str.upper()) ​# Result: '... to uppercase.'

zip(i1, i2, ...)

Groups the i-th elements of iterators i1, i2, … together. Example:
list(zip([​'Alice'​, ​'Anna'​], [​'Bob'​, ​'Jon'​, ​'Frank'​]))
Result: [('Alice', 'Bob'), ('Anna', 'Jon')]

Unzip
Equal to: 1) unpack the zipped list, 2) zip the result. Example:
list(zip(*[(​'Alice'​, ​'Bob'​), (​'Anna'​, ​'Jon'​)]
Result: [('Alice', 'Anna'), ('Bob', 'Jon')]

enumerate(iter)

Assigns a counter value to each element of the iterable. Example:
list(enumerate([​'Alice'​, ​'Bob'​, ​'Jon'​]))
Result: [(0, 'Alice'), (1, 'Bob'), (2, 'Jon')]

TRICKS

python -m http.server <P>
Want to share files between your PC and your phone? Run this command in
your PC’s shell. <P> is any port number between 0–65535. Type < IP address
of PC>:<P> in the phone’s browser. Now, you can browse the files in the PC’s
directory.

Read comic
import​ antigravity
Opens the comic series xkcd in your web browser

Zen of Python
import​ this
'...Beautiful is better than ugly. Explicit is ...'

Swapping variables
This is a breeze in Python. No offense, Java! Example:
a, b = ​'Jane'​, ​'Alice'
a, b = b, a

Result: a = 'Alice', b = 'Jane'

4.5. FUNCTIONS AND TRICKS 47

Unpacking arguments
Use a sequence as function arguments via asterisk operator *. Use a dictionary
(key, value) via double asterisk operator **. Example:
def​ ​f​(x, y, z)​:
 ​return​ x + y * z
f(*[​1​, ​3​, ​4​]) ​# 13
f(**{​'z'​ : ​4​, ​'x'​ : ​1​, ​'y'​ : ​3​}) ​# 13

Extended Unpacking
Use unpacking for multiple assignment feature in Python. Example:
a, *b = [​1​, ​2​, ​3​, ​4​, ​5​]
Result: a = 1, b = [2, 3, 4, 5]

Merge two dictionaries
Use unpacking to merge two dictionaries into a single one. Example:
x={​'Alice'​ : ​18​}
y={​'Bob'​ : ​27​, ​'Ann'​ : ​22​}
z = {**x,**y}

Result: z = {'Alice': 18, 'Bob': 27, 'Ann': 22}

5

Python Puzzles: From Basic Knowledge
to Scholar Level

Let’s dive into the beginner-level puzzles with Elo rating
below 1300. The solution for each puzzle is on the page
after it, so you won’t be tempted to cheat and look at
the solution! Also, there’s some whitespace for notes
immediately after each one.

5.1 Printing values

Elo 987

a = 20
print(a)

48

5.1. PRINTING VALUES 49

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

50 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

Variable a is initialized with the integer value 20. The
statement print(a) prints the value 20 to the screen.
Thus, the output is 20.

5.2 Basics of variables
Elo 1023

a = 20
b = 11
c = a - b

print(c)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.3. GETTING STARTED WITH STRINGS 51

There are three variables a, b, and c. The first two
variables hold integer values 20 and 11. The variable
c contains the difference of a and b, i.e., 20 - 11 = 9.
So, the output of printing c to the screen is 9.

5.3 Getting started with strings
Elo 991

my_string = 'abc'
print(my_string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

52 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

In this puzzle, we define a string 'abc' using single
quote notation ('...'). A string is a sequence of char-
acters and it represents text.

When we call print() on a string, the text itself appears
in the shell, i.e., abc.

5.4 Types of variables I
Elo 1189

a = 2
print(type(a))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.5. TYPES OF VARIABLES II 53

In this puzzle, we assign the value 2 to variable a and
print its data type.

Python automatically assigns a data type to every vari-
able. Because a is an integer, the type printed to the
shell is <class 'int'>.

5.5 Types of Variables II
Elo 1198

x = True
print(type(x))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

54 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

We set variable x to the Boolean value True. Hence, the
output is <class 'bool'>.

5.6 Minimum
Elo 1245

print(min([1, 2, 3, -4]))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.7. STRING CONCATENATION 55

We pass a list of integer values to the built-in min()
function. This returns the smallest element of the list.
Thus, it’s the integer -4.

5.7 String Concatenation
Elo 1111

first_str = 'Hello'
second_str = " world!"

str_ = first_str + second_str

print(str_)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

56 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

This puzzle defines strings in two different ways: sin-
gle quotes and double quotes. The first string is set to
'Hello' and the second to '' world!''.

After defining the two strings, we join them together
(concatenate them) and store the result in the variable
str_.

Note that our variable has a trailing underscore. This is
often used if the variable name would shadow another
already defined name. The name str is already used
for Python’s built-in function str() and converts each
object to its textual representation. The trailing under-
score ensures we don’t overwrite this important built-in
function.

Thus, the result is Hello world!.

5.8 Line Breaks I
Elo 1298

my_str = 'Hello\nworld\nhow\nare you?'
print(my_str)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.9. LINE BREAKS II 57

This puzzle defines a string with multiple '\n' charac-
ters. This is the so-called new line character which, not
surprisingly, adds a new line to the textual representa-
tion. Hence, the result is:

Hello
world
how
are you?

5.9 Line Breaks II
Elo 1270

my_str = '''Hello
world
how are
you?'''

print(my_str)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

58 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

This puzzle does the same as the puzzle before but with
one difference: instead of encoding the new line using
'\n', we define a multi-line string using triple quote
notation.

The result is (again):

Hello
world
how
are you?

5.10 List Length
Elo 1281

my_list = [1, 2, 3, 4, 5]
print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.11. COMPARISON OPERATORS I 59

This puzzle creates a list and calculates its length (len).
For a list, its length is the same as the number of ele-
ments in it. There are five numbers, so the result is
5.

5.11 Comparison Operators I
Elo 1112

bool_var = 1 == 1
print(bool_var)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

60 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

We define the Boolean value bool_var as the result of
the expression 1==1. Since the values on either side of
the expression are the same, the result is the Boolean
value True. Hence, the result of the puzzle is: True.

5.12 Comparison Operators II
Elo 1194

bool_var = 1 > 2
print(bool_var)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

5.13. MULTIPLE INITIALIZATIONS 61

Similar to the previous puzzle, the variable bool_var
stores the result of a Boolean expression, this time 1 >
2. Obviously, the result is False because 1 is not larger
than 2.

5.13 Multiple Initializations
Elo 1297

a = b = c = 1
print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

62 CHAPTER 5. PUZZLES: BASIC TO SCHOLAR

This puzzle uses a concise way of initializing multiple
variables at the same time.

The concept of naming explains what is going on here:
we create a new integer object 1 in memory (on the far
right of the first line). Then, we create three names
a, b and c and point these names to the same integer
object 1. Although the name may be different, the value
these names refer to is the same. Roughly speaking,
your colleagues, friends and family may call you different
names—but they refer to you in all cases. This view on
naming in Python is very important to understand for
many advanced language features.

Thus, the result is 1.

6

Python Puzzles: From Scholar to
Intermediate Level

Next, you’ll have a harder time with puzzles ranging
from Elo 1300 to Elo 1600.

6.1 Maximum
Elo 1401

print(max([3+2, 5*2, 12/3]))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

63

64
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we pass a list of arithmetic expressions
to the max() function. After evaluating these expres-
sions, the max() function returns the greatest value from
the list. In our case, the list looks like: [5, 10, 4.0].
Hence, this code prints 10.

6.2 Memory addresses
Elo 1278

question = 'What is the answer?'
answer = 42

question = answer

print(id(question)==id(answer))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.3. SWAPPING VALUES 65

The variable question is a string with the value 'What
is the answer?'.

The variable answer is an integer with the value 42.

After setting question = answer, the variable question
now refers to variable answer which is the integer 42.

The id() function returns the memory address of a
Python object. No two objects in memory have the
same id if they refer to different things—that’s guaran-
teed.

In this case, both variables question and answer refer
to the same object in memory, so the result is True.

6.3 Swapping Values

Elo 1321

a = 5
b = 'my string'

tmp = a
a = b
b = tmp

print(a)
print(b)

66
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.4. THE BOOLEAN OPERATOR AND 67

This puzzle defines an integer variable a and a string
variable b.

The goal of the puzzle is to swap the values of a and b.
To achieve this, we create a new variable tmp that takes
the same value as a. Next, we overwrite the value of a
to refer to b, i.e., the string value 'my string'.

Note that we have not lost the old reference of a because
we stored it in the temporary variable tmp.

Finally, we point b to the original value of a using the
temporarily saved value in the variable tmp.

Note that there’s a much shorter way of swapping two
variables in Python:

a, b = b, a

This achieves the same result but in a much more con-
cise way. Nevertheless, it does no harm to know this less
concise pattern because many coders from other pro-
gramming languages, such as Java, will use it.

As the two variables are swapped, the final value of a is
'my string' and b is 5.

6.4 The Boolean Operator AND

Elo 1432

68
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

t1 = True
t2 = True
f1 = False
f2 = False

and_result = t1 and t2
print(and_result)

and_result = t1 and f1
print(and_result)

and_result = f1 and f2
print(and_result)

and_result = f1 and t2
print(and_result)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.5. THE BOOLEAN OPERATOR OR 69

Here, we have four variables t1, t2, f1, f2. The vari-
ables t* are True and the variables f* are False.

The puzzle performs the Boolean and operation on all
combinations of these four variables.

The and operation is True if and only if both operands
are True. Hence, the result is:

True
False
False
False

6.5 The Boolean Operator OR

Elo 1417

t1 = True
t2 = True
f1 = False
f2 = False

or_result = t1 or t2
print(or_result)

or_result = t1 or f1
print(or_result)

70
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

or_result = f2 or t2
print(or_result)

or_result = f1 or f2
print(or_result)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.6. BOOLEAN OPERATORS 71

Like in the previous puzzle, the variables t1, t2, f1,
f2 are Boolean values True for t* and False for f*.

In contrast to the previous puzzle, this one performs log-
ical or operations on all combinations of these Boolean
values.

The logical or operation returns True if at least one of
the operands is True. This is the case for all but the
last instance. So the result is:

True
True
True
False

6.6 Boolean Operators
Elo 1476

t1 = 5 + 2 == 7
f1 = 2 - 1 > 3

r = t1 or False
r = r and True and f1

print(r)

What’s the output of this code snippet?

72
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Correct: +10 Elo points / Wrong: -10 Elo points

6.7. ARITHMETIC EXPRESSIONS 73

Variables t1 and f1 hold the results of two simple ex-
pressions. The first expression evaluates to True and
the second to False.

Be careful not to evaluate the Boolean statement first
(for example: 5 + (2 == 7)). Instead, the arithmetic
operation + takes precedence ((5 + 2) == 7). Thus,
the variable r is initialized with the value True.

Now, we reassign r. Let’s replace variable names with
their corresponding values so that the second to last line
becomes r = True and True and False.

A sequence of and statements is True if and only if every
element of the sequence is True. Since the last element
is False, the value of r, and the result of the puzzle, is
False.

6.7 Arithmetic Expressions

Elo 1500

r = 3 + 5 - 2
print(type(r))

this is a comment: / stands for division
/ returns a float value, e.g. 1.523, 5.0,...
r = 4 / 2
print(r)

74
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

* stands for multiplication
r = 3 * 7
print(type(r))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.8. INTEGER DIVISION AND MODULO 75

The puzzle has three major steps.

First, we print the type of the arithmetic expression 3
+ 5 - 2 which is an integer i.e. int.

Second, we perform the operation “4 divided by 2”. The
result of any division is a float value because, even if you
divide two integers, the result cannot always be repre-
sented as an integer (for example 3 / 2 = 1.5). Con-
sidering the correct type here is the biggest challenge of
the code puzzle.

Third, we print the type of the resulting value after mul-
tiplying two integers 3 and 7. Multiplying two integers
always results in an integer. Hence, the return type of
integer multiplication is an int too.

6.8 Integer Division and Modulo

Elo 1519

days_count = 219
days_per_week = 7

weeks = days_count // days_per_week
print(weeks)

days = days_count % days_per_week
print(days)

76
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.9. BUILDING STRINGS 77

In the code puzzle, we convert a certain number of days
into weeks by performing integer division with the //
operator. The remainder is simply ignored. There are
31 such full weeks.

What is the remainder – how many days are left? The
expression 31 * 7 = 217 shows that there are two days
left in addition to the 31 full weeks. Hence, the second
output of the puzzle (resulting from modulo computa-
tion) is 2. So, the overall output is:

31
2

6.9 Building Strings
Elo 1472

ha = 'ha'
ho = 'ho'

laughter = 3 * (ha + ho) + '!'

print(laughter)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

78
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Here, we have two strings 'ha' and 'ho'.

An interesting Python feature is the ability to perform
arithmetic operations on strings. The meaning of the +
operator on strings is simply string concatenation. This
means that you glue together the two strings, resulting
in the temporary string haho.

Then, we multiply this string by 3. This repeatedly con-
catenates the temporary string three times. After con-
catenating ! to the end, the final result is hahohahohaho!

6.10 The len() Function
Elo 1332

my_str = 'cat'
length = len(my_str)

print(length)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.11. STRING INDICES 79

This puzzle returns the length of the string 'cat'. The
length is the number of characters in a string—which is
3 in this case.

6.11 String Indices
Elo 1571

my_str = 'superman'

print(my_str[0])
print(my_str[1])
print(my_str[len(my_str) - 1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

80
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Here, we use indexing to access three characters at fixed
positions in the string 'superman'.

Note that the first position for any sequence data type
starts is 0, not 1:

s u p e r m a n
0 1 2 3 4 5 6 7

Thus, the final result is:

s
u
n

6.12 The upper() Function
Elo 1390

text = "Hi, how are you?"
shout = text.upper()

print(shout)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.13. THE LOWER() FUNCTION 81

This puzzle converts the string to an uppercase string
with each letter capitalized using the string method upper().
Hence, the output is: HI, HOW ARE YOU?

Note: Python objects have special functions you can
just call on them. We call these functions methods. The
notation to call a method on an object is object.method().
In this puzzle, we called the upper() method on the
string text by writing text.upper(). As you become
more familiar with Python, you will intuitively know
which methods can be called on which objects.

6.13 The lower() Function
Elo 1367

text = 'I AM NOT SHOUTING!'
whisper = text.lower()

print(whisper)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

82
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, the lower() method creates a new low-
ercase variant of a given string. So, the output is: i am
not shouting!

6.14 Somebody Is Shouting
Elo 1578

text = 'I AM NOT SHOUTING!'
text.lower()

print(text)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.15. COUNTING CHARACTERS 83

This puzzle seems to be similar to the previous puzzle.
But it has one important difference: the newly created
lowercase variant of the string is not stored anywhere.
This highlights the important fact that the upper() and
lower() methods (and other string methods) return a
new string rather than modifying an existing string.
This is because strings are immutable and so cannot
be changed.

We will see other methods which modify the objects
they are called on later on in this book.

The output is: I AM NOT SHOUTING!

6.15 Counting Characters
Elo 1543

text = 'Have a nice day.'
space_count = text.count(' ')
total_count = len(text)

print(space_count == total_count)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

84
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle uses the string class’s count method to count
the number of times the string 'Have a nice day.'
contains the empty space character ' ' (three times).

The length of the string is 16 and it is stored in the
variable total_count.

Hence, the variables space_count and total_count have
different values and the result of the puzzle is False

6.16 String Lengths
Elo 1542

text = 'Have a nice day.'
total_count = len(text)
spaces = total_count * ' '
space_count = len(spaces)

print(space_count == total_count)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.17. FINDING CHARACTERS IN STRINGS 85

Here, we have the same string in the variable text as in
the previous puzzle.

Both variables total_count and space_count have the
same integer values (16). The reason is that the latter
is built from the length of the former. It contains 16
times ' '.

Thus, the result is True.

6.17 Finding Characters in
Strings

Elo 1501

my_str = 'Donald Duck'
idx = my_str.find('a')

print(idx)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

86
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle uses the string method find() to find the
index of the first occurrence of 'a'. In 'Donald Duck'
it is at index 3.

Hence, the result is 3.

6.18 Not Finding Characters in
Strings

Elo 1334

my_str = 'Donald Duck'
idx = my_str.find('y')

print(idx > 0)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.19. COUNTING LETTERS 87

In this puzzle, we try to find the character 'y' in the
string 'Donald Duck'.

The letter y does not appear in my_str, so find() re-
turns -1.

Hence, the expression idx > 0 returns False.

6.19 Counting Letters
Elo 1535

letters = 'cheap cars crash'
cs = letters.count('c')
rs = letters.count('r')
ys = letters.count('y')

print(cs - rs > ys)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

88
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle is all about counting characters in the string
'cheap cars crash'.

The characters are defined as arguments of the count()
function.

There are three 'c' characters, two 'r' characters, and
zero 'y' characters in the string.

Thus, the result is 3 - 2 > 0 which is True.

6.20 Min() and Max() of a String
Elo 1470

my_str = 'python'
print(min(my_str) + max(my_str))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.21. REVERSED STRINGS 89

This puzzle delivers one important piece of information:
you can use the minimum and maximum function on
strings—even though they are not of a numerical type.

A string is a sequence of characters—and characters can
be sorted alphabetically (you may have heard the formal
name lexicographical sort). Naturally, the minimum of
a collection of characters is the character that comes
first in the alphabet. Similarly, the maximum is the
character that comes last in the alphabet.

So, the result is hy.

6.21 Reversed Strings
Elo 1398

my_str = 'python'
print(my_str[::-1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

90
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This is the first puzzle that introduces slice notation on
a sequence type (in this case a string).

Generally, slicing selects a subsequence of elements from
a sequence.

The notation is [start:stop:step].

The subsequence starts at the element with index start
and goes until the element with index end.

Note that the start index is included and the end index
is excluded from the slice.

Finally, the step size defines the index difference be-
tween elements. For example, step = 2 selects every
other character. Setting step = -1 selects elements in
reverse order, i.e., from right to left.

The slice in this puzzle does not define the start or
stop indices. Thus it includes all characters (the default
behaviour).

Thus, the result is the full original string in reverse:
nohtyp.

6.22 String Equality

Elo 1410

my_str = 'python'

6.22. STRING EQUALITY 91

are_equal = my_str[:] == my_str

print(are_equal)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

92
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we check whether two strings with the
same characters are equal using the equality operator
==.

We use slicing with default values to create a string with
the same characters as the original string 'my_str'.

Thus, both strings are equal and True is the output for
this puzzle.

6.23 Slicing I
Elo 1431

my_str = 'python'
my_substring = my_str[4:]

print(my_substring)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.24. SLICING II 93

In this puzzle, we use slicing with start index 4. So,
we start the subsequence at the fifth character because
indexing starts at 0.

Therefore, the result of this puzzle is on.

6.24 Slicing II
Elo 1598

my_str = 'python'
my_substr = my_str[::2]

print(my_substr)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

94
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we use slicing with default values to cre-
ate a string with the same characters as the original
string.But we access every second element by setting
(step = 2).

Thus, the result is pto.

6.25 Slicing III
Elo 1591

my_str = 'AaBbCcDdEeFf'
big = my_str[::2]
small = my_str[1::2]

print(big + '-' + small)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.26. SLICING IV 95

In this puzzle, we first define a mini alphabet.

Then we slice every second character on the second and
third lines.

In the first case, (big), we start with the first sequence
element. In the second case ,(small), we start with the
second sequence element.

Thus, the first slice returns all capitalized letters and
the second slice returns all lowercase letters:

ABCDEF-abcdef

6.26 Slicing IV
Elo 1588

chars_1 = 'Rzotbo'
chars_2 = 'tigno'

mystery = chars_1[::2] + chars_2[1::2]

print(mystery)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

96
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle concatenates the results of two slice op-
erations on two strings and stores it in the variable
mystery.

The first slice operation takes every second value and
returns 'Rob'.

The second takes every second value starting from the
second element and returns 'in'.

When concatenated together, the final result is Robin.

6.27 Slicing V
Elo 1395

my_str = 'Batman'
other_str = my_str[0:len(my_str)]

print(other_str)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.28. MEMORY ADDRESSES AND SLICING 97

The main challenge of this puzzle is determining the
result of the slicing operation in the second line.

We start at the first sequence element and slice until we
reach the index len(my_str) (= 6). Note that slicing
never includes the end index, so the last index included
is 5.

Thus, it consists of the original characters Batman.

6.28 Memory Addresses and
Slicing

Elo 1501

my_str = 'Aquaman'
id_1 = id(my_str)

my_str = my_str[4:]
id_2 = id(my_str)

print(id_1 == id_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

98
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle takes the id of two strings and compares
them.

The function id() returns a unique identifier (integer
value) for all objects in memory.

The real question is whether my_str referred to two dif-
ferent memory locations?

Let me emphasize that the slice operation creates a new
string and does not modify an existing string. This is be-
cause strings are immutable—they cannot be changed.
Each time you perform a slice operation or concatenate
two strings, you create a new object in memory.

Thus, this puzzle’s output is False.

6.29 Accessing List Items I

Elo 1567

my_list = [
'apple',
'banana',
'orange',

]

item = my_list[len(my_list)-2]
print(item)

6.29. ACCESSING LIST ITEMS I 99

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

100
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we create a list of three strings.

Then, we use indexing to select elements in the list. The
index is len(my_list) - 2 = 3 - 2 = 1.

So, the item to be printed is banana.

6.30 Accessing List Items II
Elo 1340

my_list = [
'apple',
'orange',
'banana',

]

item = my_list[1]

print(item)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.31. LIST AS STACK 101

With the help of Python’s simple indexing scheme, we
return the second element (index equal to one).

Thus, the result is orange.

6.31 List as Stack
Elo 1499

my_list = [
'apple',
'banana',
'orange',

]

item = my_list.pop()

print(item)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

102
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Similar to the last puzzle, the list contains three string
elements.

We use the pop() method to remove the last element
from the list ('orange'). This is returned and assigned
to the variable item.

Note that the pop() method can be used to easily im-
plement a stack data structure in Python.

This puzzle’s output is orange.

6.32 More String Operations
Elo 1461

phone = 'smartphone'
x = phone.startswith('smart')
y = phone.endswith('phone')

print(x and y)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.33. CHECKING FOR SUBSTRINGS 103

This puzzle checks two things: does the string 'smartphone'

1. start with the prefix 'smart', and

2. end with the suffix 'phone'?

This is the case, so the result is True.

6.33 Checking for Substrings
Elo 1133

phone = 'smartphone'
x = 'xyz' in phone

print(not x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

104
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Now, we use the same string as before to check whether
a certain substring exists in this string.

Note that a string is a sequence so you can check whether
a subsequence exists within it.

The string 'smartphone' does not contain the subse-
quence 'xyz'.

Hence, the result is True, i.e., not False.

6.34 Stripping String Boundaries
Elo 1455

sentence = ' Python is cool! '
sentence = sentence.strip()
x = sentence.endswith(' ')

print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.35. STRINGS: STRIPPING VS. REPLACEMENT105

Let’s consider the string sentence in the puzzle. It has
leading and trailing whitespaces.

The strip() method is a very useful tool for text pro-
cessing tasks: it removes any leading and trailing whites-
paces.

So, the result is False.

6.35 Strings: Stripping vs.
Replacement

Elo 1555

sentence = ' Python is cool! '
str_1 = sentence.strip()
str_2 = sentence.replace(' ', '')

print(str_1 == str_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

106
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle is similar to the last one but with one dif-
ference: the second string does not strip leading and
trailing whitespaces. Instead, it replaces all occurrences
of the whitespace character ' ' with the empty string.
This is the same as removing all whitespace in the sen-
tence.

While str_1 still has some whitespaces left (in between
each word), str_2 does not.

So, the result of the final print statement is False.

6.36 Gluing Strings Together
Elo 1419

shopping_list = [
'bread',
'milk',
'cheese',

]

string = ','.join(shopping_list)

print(string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.37. THE COPY OPERATION 107

The shopping list contains three items: bread, milk, and
cheese.

The join() method is a well-known string method. It
combines a collection elements using the separator string
on which the method was called. The separator is used
to glue together the individual list elements.

So, it returns the final string break,milk,cheese.

Note there is no space between each item because the
separator string did not contain a space.

6.37 The Copy Operation
Elo 1489

my_list = [
'Bob',
'Alice',
'Donald',
'Goofy',

]

your_list = my_list.copy()

print(id(your_list) == id(my_list))

What’s the output of this code snippet?

108
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Correct: +10 Elo points / Wrong: -10 Elo points

6.38. GROWING LIST CONTENTS I 109

This puzzle first copies the given list. Then it checks
whether the copy and the original list refer to the same
element in memory. This is not the case: the new list
represents a different object.

So, the result of comparing the two lists is False.

6.38 Growing List Contents I
Elo 1480

my_list = []

my_list.append('Tomato')
my_list = my_list + ['Pizza']

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

110
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

First, we create an empty list and append the string
'Tomato'.

Second, we concatenate two lists together with the +
operator.

Thus, the result is a new list ['Tomato', 'Pizza'].

6.39 Growing List Contents II
Elo 1427

odd = [1, 3, 5, 7]
even = [0, 2, 4, 6]

odd.extend(even)

print(len(odd))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.39. GROWING LIST CONTENTS II 111

Surprisingly, many students don’t know the extend()
method despite being perfectly aware of the append()
method.

If you want to add a single element to a list, the append()
method is all you need.

What if you want to add multiple elements? Beginner
coders often use one of the following options:

1. they create a for loop and append a single element
multiple times, or

2. they use the list concatenation operator '+' e.g.
[3, 2] + [1, 2] => [3, 2, 1, 2])

The problem with the former is that it’s inefficient to
modify a list n times to append n elements.

The problem with the latter is that it creates a com-
pletely new list which is both time and space inefficient—
especially for large lists.

The solution is simple: use the extend() method. It
appends multiple elements to a list in a single operation.

Although it is semantically doing the same thing as call-
ing append() multiple times, extend() is much more
efficient. This is because it’s implemented in low-level
C code and is highly optimized towards this specific ob-
jective. Always use extend() if you want to append
multiple elements to a list!

112
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The result of this puzzle is the list [1, 3, 5, 7, 0,
2, 4, 6] so the length is 8.

6.40 List Operations I
Elo 1381

my_list = []
my_list.append(1)
my_list.append(2)
my_list.pop()

print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.41. LIST OPERATIONS II 113

First, we create an empty list and add some values (1
and 2) to it.

Second, we remove the last element (2) from the list.
So, the list has only one element left.

Thus, the result is 1.

6.41 List Operations II
Elo 1441

my_list = [4, 5, 6]
index = 0
my_list.insert(index, 3)

print(my_list[1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

114
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle inserts the element 3 at position 0 in the
list.

The resulting list looks like this: [3, 4, 5, 6].

The second element is printed to the shell which is 4.

6.42 List Operations III
Elo 1485

my_list = [1, 2, 3, 4]
value = 2
index = 2
my_list.remove(value)

print(my_list[index])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.43. LIST OPERATIONS IV 115

In this puzzle, we remove the first occurrence of the
element '2' from my_list. The result is [1, 3, 4].

We now print the third element and the result is 4.

6.43 List Operations IV

Elo 1469

my_list = [1, 2, 3, 3, 2, 3]
index = my_list.index(3)

print(index)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

The index(x) method returns the index of the first oc-
currence of x in the sequence on which it is called.

In this case, we are looking for the value x = 3. There
are three such occurrences but only the first one is re-
turned to the function: index 2.

Therefore, the result is 2.

116
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

6.44 List Operations V
Elo 1399

my_list = [1, 2, 3, 0, 2, 3]
count = my_list.count(3)

print(count)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

After creating the list, we call the count(x) method to
count the number of occurrences of x = 3 in the list.

There are two such occurrences, so the result is 2.

6.45 List Operations VI
Elo 1311

my_list = ['car', 'bike', 'boat']
my_list.clear()

print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.46. LIST OPERATIONS VII 117

Here, we create a new list with three elements and we
clear() the list immediately after. This removes all
elements from the list so that the list is empty.

The resulting length is, therefore, 0.

6.46 List Operations VII
Elo 1501

my_list = [4, 7, 3, 9, 1]
my_list.sort()

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

118
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle is simple but introduces a profound piece
of knowledge for your Python education: sorting lists.
Just call the sort() method on any list and it returns
the list in ascending order.

Some Finxters are trapped by this puzzle because they
think the sort() method returns a new list with sorted
values. This is not the case, the original list is modified.
This is because lists are mutable objects, i.e., they can
be modified.

Thus, the result is [1, 3, 4, 7, 9].

6.47 List Operations VIII
Elo 1333

my_list = [10, 9, 8, 7]
my_list.reverse()

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.48. LIST OPERATIONS IX 119

This puzzle reverses the order of the list elements.

As with sorting, the list itself is changed (Python does
not create a new list of reversed elements).

Thus, the output is [7, 8, 9, 10].

6.48 List Operations IX
Elo 1498

my_list = [False, False, True]
x = any(my_list)

print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

120
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle tests your intuitive understanding of the
function any().

Maybe you’ve never used it in your code projects –
but you can figure out what it does when applied to
a Boolean collection, right?

It checks whether “any” of the elements are True.

In this case, the third list element is True, so the result
is True.

6.49 List Operations X
Elo 1532

bool_val = all([
1 == 1,
7 // 2 == 2 + 1,
2 == 6 % 4,

])

print(bool_val)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.50. LISTS AND THE RANGE FUNCTION I 121

This puzzle goes one step further. You need to figure
out multiple logical expressions before testing whether
all() of them are True.

The first expression 1==1 is obviously True. The second
expression is also True because 7 // 2 = 3 = 2 + 1.
Finally, the third expression is True as six modulo four
is 2.

Thus, the all() function returns True.

6.50 Lists and the Range
Function I

Elo 1300

len_of_list = len(list(range(10)))
print(len_of_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

122
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

In this puzzle, we first create a new list with sequence
values from 0 to 9 (inclusive).

It is very common for beginners to miss this. For the
vast majority of Python functions, the stop value is ex-
cluded – it’s not part of the returned sequence. This is
also True for advanced Python libraries for data science
and machine learning like NumPy and TensorFlow. So
learn it now and learn it well!

As there are ten elements in the list, the result is the
integer value 10.

6.51 Lists and the Range
Function II

Elo 1440

l = list(range(5, 15, 5))
print(l)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.52. LISTS AND THE RANGE FUNCTION III 123

Similar to the last puzzle, this one tests your under-
standing of the range function.

The function range(start, stop, step) returns a se-
quence of values starting at index start (inclusive),
ending at index stop (exclusive), and including every
step-th value.

So, the final result is the list [5, 10].

6.52 Lists and the Range
Function III

Elo 1456

l = list(range(10, 1, -1))
print(l)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

124
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This time, the range function has a negative step size.
This means that the resulting sequence has descending
values.

We start at position 10(inclusive) and end at position 1
(exclusive).

Thus, the result is [10, 9, 8, 7, 6, 5, 4, 3, 2].

6.53 Python’s Multiple
Assignment I

Elo 1302

a = 'world!'
b = 'hello '

b, a = a, b

print(a + b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.54. SLICE ASSIGNMENTS 125

The puzzle creates two string variables and swaps them
using concise multiple assignment notation:

b, a = a, b

The Python interpreter performs two steps:

1. evaluate the right-hand side of the equation, then

2. assign the results to the variables on the left-hand
side.

In the example, we swap the values of a and b.

Thus, the result is the concatenated string hello world!

6.54 Slice Assignments
Elo 1507

my_list = [1, 1, 1, 1]
my_list[1::2] = [2, 3]

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

126
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle trains your understanding of an interest-
ing Python feature: slice assignments to replace sub-
sequences.

First, we create the list 'my_list' with four integer
values.

Second, we select the elements to be replaced using slice
notation [start:stop:step] on the left-hand side of
the equation.

Starting with the second list element (index 1), we take
every other element (step size 2). This means we will
replace the second and fourth elements.

Third, we define the elements that to replace the se-
lected elements (2 and 3).

The result of the puzzle is, therefore, [1, 2, 1, 3].

6.55 Strings and Lists II
Elo 1467

my_list = ['1, 2, 3', '4, 5']
print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.56. STRING COMPARISONS 127

The challenge in this puzzle is to read code thoroughly.

Although it may look like there are five elements in the
list, there are only two. The first element is the string
'1, 2, 3' and the second element is the string '4, 5'.

Therefore, the length of the list is 2.

6.56 String Comparisons
Elo 1419

word = 'radar'
p = word == word[::-1]

print(p)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

128
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

A palindrome is a word that reads the same forward and
backward. In this puzzle, we check to see if 'radar' is
a palindrome.

First, we create a string 'radar' and store the Boolean
result of (word == word[::-1]).

The right-hand side of the equation reverses the charac-
ters in the string.

As it turns out, 'radar' reads the same forward and
backwards and so it’s a palindrome.

Thus, the result is True.

6.57 From Booleans to Strings
Elo 1549

value_0 = int(True)
value_1 = int(False)
string = str(value_0) + str(value_1)

print(string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.58. BOOLEAN TRICKERY I 129

This workout tests your understanding of three Python
data types: Boolean, integer and string.

Boolean values are internally represented as integers:
0 being False and 1 being True. When converting a
Boolean to an integer, use this mapping.

Before we add them together, we convert them to strings.

Thus, the + operator performs concatenation rather than
integer addition.

The result is 10.

Note that when an operator performs different actions
for different data types, we say this operator is over-
loaded.

6.58 Boolean Trickery I
Elo 1309

print(1000 * False)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

130
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

As you already know, the value False is represented as
an integer 0 in Python.

If you multiply 0 with anything, you get 0.

So, the result is 0.

6.59 Boolean Trickery II
Elo 1324

print((3 == 4) == 0)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.60. BOOLEAN TRICKERY III 131

When using operators, binary or otherwise, the order of
operation matters.

You can enforce a certain order of operations using bracket
notation.

In the puzzle, we first evaluate the expression (3 == 4)
which is False.

Next, we compare False with 0.

As Python represents Boolean values with integers (False
by 0) the puzzle’s result is True.

6.60 Boolean Trickery III
Elo 1388

print(bool([]))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

132
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Python allows you to convert any object to a Boolean
value.

This is useful for concise if and while loop conditions
– you’ll see this a lot in practice.

You already know that an integer value 0 is converted
to the Boolean value of False. But which other objects
are converted to False?

By default, every object is converted to True with a few
exceptions:

• empty sequences,

• 0,

• 0.0,

• empty sets or dictionaries {},

• certain empty objects e.g. empty lists

Thus, the result is False.

6.61 Looping over Ranges
Elo 1422

n = 0

6.61. LOOPING OVER RANGES 133

for i in range(0, 6, 3):
n += i

print(n)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

134
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The loop variable i takes on two values: i = 0 and i =
3.

It does not take on i = 6 because the stop value is al-
ways excluded in range sequences range(0, 6, 3).

Therefore, the sum variable n stores the integer 0 + 3
= 3 which is the result of the puzzle.

6.62 Reversed Loops
Elo 1453

str_ = ''

for c in reversed('nohtyp'):
str_ += c

print(str_)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.63. BOOLEAN TRICKERY IV 135

The built-in function reversed(x) creates an iterator -
an object you can loop over. It visits the elements in
the sequence x in reverse order.

In our case, x = 'nohtyp'.

The result is this sequence of characters reversed i.e.
python.

6.63 Boolean Trickery IV
Elo 1347

s = sum([
True,
False,
True,
True,

])

print(s)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

136
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Have you studied the previous explanations thoroughly?
Then you should have had no problem with this puzzle!

The Boolean value True is represented by 1 and the
Boolean value False is represented by 0.

So, when summing over the list of Boolean values, the
result is 1 + 0 + 1 + 1 = 3

6.64 Lists and Memory
Addresses

Elo 1391

my_list = []
id_1 = id(my_list)

my_list = my_list + [1]
id_2 = id(my_list)

print(id_1 == id_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.65. LIST OBJECTS 137

In the first line we create a new list object and assign it
to the variable my_list.

Then we use the built-in function id(x) to get the mem-
ory address of it.

When we concatenate my_list with [1] and assign it to
my_list, a new list object is created. So, the reference
stored in my_list changes.

This is why id_1 is different from id_2 and the com-
parison returns False.

6.65 List Objects
Elo 1399

my_list = []
id_1 = id(my_list)

my_list.append(1)
id_2 = id(my_list)

print(id_1 == id_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

138
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The code in this puzzle is similar to the code in the
previous one with an important difference: instead of
concatenating the lists, we append a new value using
list.append(x).

This does not create a new object because we modify
the old list rather than creating a new one from scratch.

Therefore, we have the same memory address both be-
fore and after appending the value.

Thus, the result is True.

6.66 Boolean Tricks
Elo 1486

b = all([
bool('0'),
bool('?'),
bool('-'),
bool('e'),

])

print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.67. COMPLEX NUMBERS 139

Python lets you convert a string to a Boolean.

The rule is simple: any string longer than zero charac-
ters is True.

Only the empty string '' is False.

In fact, you can specify a Boolean value for any object
in Python by defining its __bool__(self) method in a
custom class definition.

Python’s built-in all(x) function checks if all Boolean
values in the container are True.

Since there is no empty string in the list, the result is
True.

6.67 Complex Numbers
Elo 1575

a = complex(2, 4)
b = complex(1, -3)

print(a + b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

140
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

From time to time, you’ll need to use complex numbers
for graphical applications, data analysis or simulations.

Simply use the built-in Complex class to represent com-
plex numbers. The constructor Complex accepts two
values. The first is the real part and the second is the
(optional) imaginary part. For example, complex(1)
yields (1 + 0j).

The sum of two complex numbers is the sum of their
real values plus the sum of their imaginary values.

In this puzzle, the real part is 2 + 1 = 3 and the imaginary-
part is 4 + (-3) = 1.

The result, therefore, is (3+1j).

6.68 Tuples
Elo 1462

x = 'a', 'b', 'c'
y = 3,

print(type(x) == type(y))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.69. MULTIPLE ASSIGNMENTS 141

The objects defined in this puzzle are tuples. It’s a bit
tricky because the puzzle uses tuple notation without
parentheses.

You can define a tuple in two ways:

1. t1 = (1, 2), or

2. t2 = 1, 2.

Both are equivalent.

In the puzzle, the values of x and y are tuples.

So the result of the type comparison is True.

6.69 Multiple Assignments
Elo 1478

x, y, z = 'cat'

print(y)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

142
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle demonstrates a very important feature in
Python that you’ll see a lot in the real world.

We assign the string 'cat' to three different variables
in one line:

• the value of x is 'c',

• the value of y is 'a',

• the value of z is 't'.

So printing y returns a.

6.70 Boolean Integer Conversion
Elo 1543

my_bools = []

for n in range(-1, -10, -1):
my_bools.append(bool(n))

result = all(my_bools)

print(result)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.71. THE ANY() FUNCTION 143

Python automatically converts integers to Booleans if
Boolean values are expected.

The rule is simple: 0 is False and all other integers are
True.

Converting Boolean values back to integers is also sim-
ple: True is the integer 1 and False is the integer value
0.

In the puzzle, we iterate over the values -1, -2, -3,
... -9—using the range() function with negative step
size—and convert them to Boolean values.

As none of the values are 0, Python converts them all
to True.

Using the built-in all(x) function, we check if all values
in the list are True. This is the case, so the result is
True.

6.71 The any() Function

Elo 1593

b = any([
bool(None),
bool(0),
bool(dict()),

])

144
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.72. THE SUM() FUNCTION 145

Python’s built-in function any(container) checks if container
contains any value that evaluates to True.

In the previous puzzle, you learned that the 0 is con-
verted to False. Similarly, None also evaluates to False.

To convert a container (list, dictionary, set,...) to a
Boolean, follow this rule:

A container c is True if and only if:

1. it exists, and

2. len(c) > 0

Thus, the Boolean value of an empty dictionary is False.

Therefore, the list contains three False values.

So, any(...) returns False.

6.72 The sum() Function

Elo 1482

my_list = [1, 1, 0]
s = 3

if my_list:
s = sum(my_list)

146
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

print(s)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.73. ACCESSING COMPLEX NUMBERS 147

The puzzle tests your understanding of two concepts
you’ve already seen:

• Boolean values of containers and

• Summing over Boolean values.

In Python, it’s common to use Boolean auto conversion
statements such as if my_list:.

In plain English, read it as: “If my_list is not equal to
None and has at least one element, do the following.”

Since my_list contains three elements, the code inside
the branch is executed and s is set to the sum of all
elements in the list: 1 + 1 + 0 = 2.

6.73 Accessing Complex
Numbers

Elo 1571

a = complex(2, 5)
b = complex(a.imag, a.real)

print(b)

148
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

6.74. TUPLE CONFUSION 149

You can access the real-part of a complex number with
its .real attribute and the imaginary part with the
.imag attribute.

We use those two values to create a new complex number
that has swapped the real and imaginary parts of a.

So, b is (5+2j).

Note: attributes and methods look similar when applied
to objects. Remember that you do not place () after
attributes but you do for methods.

6.74 Tuple Confusion
Elo 1479

p1 = (1, -1)
p2 = (2, 5)
p3 = (p1[0] + p2[0], p1[1] + p2[1])

print(p3)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

150
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle is all about tuples.

The values of a tuple can be retrieved using brackets
and an index value.

Like all other Python indexing, we use index 0 to access
the first element, index 1 to access the second element
and so on.

In this puzzle, we create a new tuple by adding the
values of p1 and p2.

So, the value of p3 is: (1 + 2, -1 + 5) = (3, 4).

6.75 Understanding While ...
Else (1/3)

Elo 1561

index = 5
s = 'g'

while index > 3:
index -= 1
s += 'o'

else:
s += 'd'

print(s)

6.75. UNDERSTANDING WHILE ... ELSE (1/3) 151

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

152
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Python has a special loop statement called the while-else
loop.

The body of the while part is repeated until the condi-
tion is not met anymore.

The else statement only executes if the while loop fin-
ishes because its condition has become False.

If Python exits the while loop prematurely via a break
statement, the else part is not executed.

In this puzzle, the while loop is executed twice with
index = 5 and index = 4). This appends 'oo' to the
initial string 'g' in the variable s.

In the next step, the condition of the while loop becomes
False and the else part executes.

In the else branch, Python adds 'd' to the variable s.

So, the final result is good.

6.76 Understanding While ...
Else (2/3)

Elo 1578

index = 5
string = 'g'

6.76. UNDERSTANDING WHILE ... ELSE (2/3) 153

while index > 3:
index -= 1
string += 'o'
break

else:
string += 'd'

print(string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

154
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle is similar to the previous puzzle.

Initially, string only contains the character 'g'.

Then, the while loop is executed and adds the character
'o' to the variable string.

However, the loop ends prematurely because of the break
statement.

Thus, the else branch is not executed and the result is
go.

6.77 Understanding While ...
Else (3/3)

Elo 1571

index = 5
string = 'g'

while index > 3:
index -= 1
if index == 3:

continue
string += 'o'

else:
string += 'd'

6.77. UNDERSTANDING WHILE ... ELSE (3/3) 155

print(string)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

156
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

Again, the puzzle shows a similar code snippet as in the
previous two puzzles. The only difference is that when
index == 3, the execution goes back to the beginning
of the while-loop because of the continue statement.

The loop body executes twice for index = 5 and index
= 4 but only the first round adds the character 'o' to
string.

In the second round, the index is set to 3. Thus, Python
enters the if branch that contains the continue state-
ment.

After this, the while condition is evaluated again. Since
the value of index is 3, the while condition evaluates to
False.

So, Python executes the else branch. The last step adds
the character 'd' to string and the final output is god.

6.78 Basic Arithmetic
Elo 1419

def magic(x, y):
return x ** y + 1

print(magic(2, 3))

What’s the output of this code snippet?

6.78. BASIC ARITHMETIC 157

Correct: +10 Elo points / Wrong: -10 Elo points

158
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

We define a function with two arguments: x and y.

The function computes x to the power of y - x ** y -
and adds one.

We call the function with x = 2 and y = 3 and get (2
* 2 * 2) + 1 = 9

6.79 Dictionary

Elo 1531

dict_ = {
1: 'one',
2: 'two',
3: 'three',

}

def to_str(number):
if number in dict_:

return dict_[number]
else:

return '?'

s1 = to_str(2)
s2 = to_str(7)

print(s1 + s2)

6.79. DICTIONARY 159

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

160
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The puzzle shows how to create and access the dictio-
nary data structure in Python.

First, we create the dictionary dict_.

Then we create the function to_str. It takes a single
argument number and checks if it is present among the
keys of dict_. If it is present, it returns its correspond-
ing value. Otherwise, it returns the string '?'.

After defining the function, we use it to initialize two
variables s1 and s2.

For s1, the value returned by to_str(2) is 'two' be-
cause 2 is one of the keys of dict_.

For s2, the value returned by to_str(7) is '?' because
7 is not a key of dict_.

By printing the concatenation of the two strings, we get
'two?'.

6.80 Dictionary of Dictionaries

Elo 1501

sales = {
100: {'item': 'apple', 'price': .95},
101: {'item': 'banana', 'price': .55},
102: {'item': 'orange', 'price': .75},

}

6.80. DICTIONARY OF DICTIONARIES 161

value = sales[102].get('price')

print(value)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

162
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The variable sales is initialized as a dictionary of dic-
tionaries. Each value of sales represents the sold item’s
name and price.

First, we access the full dictionary of item 102 using
bracket notation sales[102].

To get the price, we call the get() method and pass the
string 'price'.

Thus the value stored in value is 0.75.

Note that calling the get() method is an alternative
way to access a value. Writing sales[102].get('price')
is the same as writing sales[102]['price'].

An advantage of using get() is that it returns None if
the key is not present in the dictionary.

In contrast, if you use square brackets [] and try to
access key-value pairs that do not exist, Python raises a
KeyError which you must handle appropriately to avoid
a program crash.

6.81 Reverse Dictionary Index

Elo 1533

roman = {
1: 'I', 2: 'II', 3: 'III', 4: 'IV', 5: 'V',
6: 'VI', 7: 'VII', 8: 'VIII', 9: 'IX', 10: 'X'

6.81. REVERSE DICTIONARY INDEX 163

}

arab = {}

for key, value in roman.items():
arab[value] = key

print(arab['VII'])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

164
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

The variable roman is initialized as a dictionary. Its
keys are the Arabic numerals from 1-10 and the values
are their corresponding roman numeral strings.

To store the reverse mapping from roman numeral strings
to Arabic numbers, we first initialize an empty dictio-
nary arab.

Then we iterate over the (arab, roman) pairs in roman
using the items() method.

For each pair, we set the roman string as the key arab[value]
and set the Arabic numeral as its value = key.

Hence, when printing arab['VII'], Python outputs the
Arabic numeral 7.

6.82 Default Arguments
Elo 1531

def func(a, b, c = 5):
return a + b + c

r1 = func(1, 0)
r2 = func(1, 1, 2)

print(r1 < r2)

What’s the output of this code snippet?

6.82. DEFAULT ARGUMENTS 165

Correct: +10 Elo points / Wrong: -10 Elo points

166
CHAPTER 6. PUZZLES: SCHOLAR TO

INTERMEDIATE

This puzzle shows you how to overload your own func-
tions. Now you can write one function that takes a
different number of arguments.

We define the function func with three arguments. The
first two arguments are required—you have to specify
them every time you call the function.

However, the third argument c is optional and has a
default value of 5. This means that if you call func
with two arguments, c is assumed to be 5.

Hence, variable r1 holds the value 6 (1 + 0 + 5) while
variable r2 holds the value 4 (1 + 1 + 2).

In the latter case, the value of c is specified as 2—
overwriting the default value 5.

Therefore, the print statement at the end evaluates to
6 < 4 = False.

7

Python Puzzles: From Intermediate to
Professional Level

Have you tracked your Elo rating throughout the book?
You should already have seen a significant improvement
in your Elo rating by now. The puzzles that follow are
even harder and range from Elo 1600 to Elo 1900. If you
can solve these correctly, you can consider yourself an
above-average coder and will soon be at a professional
level.

7.1 Building Strings II

Elo 1600

chars = 'dog!'

167

168
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

char_1 = chars[-2]
char_2 = chars[chars.find('o')]
char_3 = chars[-1]

print(char_1 + char_2 + char_3)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.2. STRING: SLICING AND INDEXING 169

The puzzle uses negative indexing on the string 'dog!'.

Negative indexing is a way of accessing the string from
right-to-left instead of from left-to-right. For example,
the index -1 accesses the last character of the string.
The index -2 accesses the second last character and so
on. This way, you can decide on the more convenient
way of accessing the specific characters you want.

In the puzzle, we start with the second last character
'g'.Then, we access the character at the chars.find('o')
= 1 position which is 'o'. Finally, we access the last
character '!'.

The print statement prints the concatenated characters
to the shell which is the string go!.

7.2 String: Slicing and Indexing
Elo 1611

chars = 'bretsamaty'
word = chars[1:7][::-1]

print(word)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

170
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In contrast to the previous slicing puzzles, this puzzle
performs two slicing operations on top of each other.

First, we take the substring from the second index (posi-
tion 1) to the sixth index (position 7 - 1) to get 'retsam'.

We then reverse this string and the result is master.

7.3 Built-in Python Operations
Elo 1609

odds = [1, 3, 5, 7]
s = sum(odds) + max(odds) + min(odds)

print(s)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.4. STRINGS AND LISTS I 171

We add three elements together: (1) The sum of the
elements of the list, (2) the maximum element of the
list, and (3) the minimum of the list.

So, in total, we have: 16 + 7 + 1 = 24

7.4 Strings and Lists I
Elo 1602

numbers = '1-2-3-4-5-6-7-8-9'

my_list = numbers.split('-')
my_list[::2] = (len(numbers) // 4 + 1) * 'X'

out = ''.join(my_list)
out = out.replace('X', '')

print(out)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

172
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle first creates a string of the numbers 1-9 with
a '-' delimiter. Then, we split the numbers on the de-
limiter to get a list just containing the numbers 1-9.

We change the result using advanced slice assignment
notation. Slice assignment is similar to slicing but on
the left-hand side of the equation. Using slicing, we
select the elements to be replaced with the elements on
the right-hand side of the equation. In this case, we
replace every other value with 'X'.

Note that the expression on the right-hand side of the
equation evaluates to 'XXXXX'. We used the multiplica-
tion operator on the string 'X' to create this sequence
based on the length of the collection.

If the right-hand side was just 'X', Python would raise
a ValueError because you cannot assign a sequence of
length 1 to a slice of length 5.

At this point, the variable my_list contains a list of
strings where every list element with an odd index is
equal to 'X'.

We join this sequence on the empty string, resulting in
2468.

7.5. FORMATTING PRINTOUTS 173

7.5 Formatting Printouts
Elo 1887

print(format(0.1, '.5f'))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

174
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This one-liner puzzle dips into Python’s syntactic sugar
using the format function. Don’t worry if you haven’t
solved it – it’s only important that you try, realize your
knowledge gap, and fill it immediately.

The format() function takes two arguments: The first
argument is the value to be formatted, the second is the
formatting specifier and defines how the value should be
formatted.

The term '.5f' specifies that the number should con-
tain 5 positions after the decimal point.

Thus, the output is 0.10000.

7.6 Floating Point Comparisons
Elo 1765

a = 0.1 + 0.1 + 0.1
b = 0.3

print(a == b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.6. FLOATING POINT COMPARISONS 175

This puzzle performs a simple arithmetic computation
adding together the float value 0.1.

The question seems to be very simple—but as we’ll see
in a moment, it’s not simple at all.

Your inner voice is wrong. And while it is not so impor-
tant why it’s wrong, it is important that you learn to dis-
trust your intuition and your urge to be a lazy thinker.
In coding, assuming that things are super-simple is a
deadly sin.

In the puzzle, you have assumed that 0.1 represents
the decimal value 0.1 or 1/10. This is a natural but
incorrect assumption. The value 0.1 doesn’t exist in
your computer. Instead, your computer stores every
number in a binary format consisting only of zeros and
ones.

Use an online converter to convert the decimal value 0.1
to a binary value and you will get:
0.000110011001100110011...

The floating point representation of 0.1 in binary has
an infinite number of digits. So, your computer does the
only thing it can do: limit the number of digits.

This has the following effect. The decimal number 0.1
is represented by the closest floating point number
0.100000000000000005551115... that can be repre-
sented in limited space.

176
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

Now, it’s easy to see why 0.1 + 0.1 + 0.1 != 0.3 and
that the answer is False.

As one of our readers, Albrecht, correctly pointed out,
the problem can be fixed with Python’s Decimal mod-
ule:

from decimal import Decimal

a = 0.1 + 0.1 + 0.1
b = 0.3
print(a == b)
False

c = Decimal('0.1') + Decimal('0.1') + Decimal('0.1')
d = Decimal('0.3')
print(c == d)
True

You can see that the equality of Decimal variables c and
d gives the expected result True.

7.7 Python’s Multiple
Assignment II

Elo 1678

7.7. PYTHON’S MULTIPLE ASSIGNMENT II 177

odd = [1, 3, 5]
even = [2, 4, 6]

nums = 6 * [' ']
nums[::2], nums[1::2] = odd, even

print(nums)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

178
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

Here, we have two sequences – one with odd and one
with even numbers.

Then, we create a list with six white-space characters
using simple list arithmetic. The white-space characters
serve as dummy values, intended only for initializing a
list of six elements.

Using a combination of slice assignments and multiple
assignments, we replace the elements with even indices
by the odd numbers and the elements with odd indices
by even numbers.

The result is the sequence [1, 2, 3, 4, 5, 6].

7.8 The Not-So-Obvious Case
Elo 1698

unknown = #input ??
str_ = unknown[0]

if str_ in 'a' and len(unknown) == 1:
print('X')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.9. ROUNDING VALUES 179

This puzzle is a trap.

Seeing all the stuff the puzzle is doing, your brain wants
to think about the if branch and what the output would
be.

In reality though, the puzzle throws an error. We cannot
assign a variable to comment. It’s as if there is nothing
on the right-hand side of the equation.

So, Python raises a SyntaxError: invalid syntax.

7.9 Rounding Values
Elo 1701

b = round(15, -1) == round(25, -1)
print(b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

180
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

If you have to think about the basics, you’ll struggle
with more advanced concepts that build upon those ba-
sics.

Rounding values is certainly one of those basic pieces of
wisdom you have to learn.

The round() function takes two arguments. The first
is the value to be rounded. The second argument is the
number of digits to round to. A positive number, say
5, means it will round the number to 5 decimal places.
A negative number, say -2, means it will reduce the
number of significant digits by 2 e.g. 1234 becomes 1200.

Python then rounds to the next number with the spec-
ified precision:

• Value 1.5 is rounded to 2 and value 2.5 is rounded
to 2 and so on.

• Value 1.55 is rounded to 1.6 and value 1.65 is
rounded to 1.6 and so on

• Value 15 is rounded to 20 and value 25 is rounded
to 20 and so on.

Rounding happens as you would expect, unless the last
number is 5. Then Python uses “banker’s rounding”
which means it rounds to the nearest even value as a
tiebreaker.

7.10. INITIALIZING INTEGERS 181

If the second to last digit is odd, Python rounds up.
Thus round(15, -1) is 20. If the second to last digit
is even, Python rounds down and so round(25, -1) is
20.

Hence, the result is True.

7.10 Initializing Integers
Elo 1761

n = int('1101', 2)
print(n)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

182
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle gives you an interesting new way of initializ-
ing integers by using binary values. This is useful if you
load some binary values from a file on your computer
and you need to convert them.

Specify the string input as the first argument and the
base as the second argument. Then, Python does the
conversion for you: 1 * 2**3 + 1 * 2**2 + 0 * 2**1
+ 1 * 2**0 = 8+4+1 = 13.

7.11 Basic Typing
Elo 1619

type_1 = type(round(1.9, 0))
type_2 = type(round(1.9))

print(type_1 == type_2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.12. SHORT CIRCUITING 183

The built-in round() function accepts two parameters:

1. the value you want to round, and

2. the number of digits (precision).

Python is a very intuitive programming language. Round-
ing is no exception: If you pass a value for the number
of digits, the result of round() is a float. If you don’t,
the result is an integer.

Python rounds to the closest multiple of 10 to the power
of -(number of digits). So for two digits, we round to the
closest multiple of 10−2 and for zero digits, we round to
the closest multiple of 10−0 = 1 (which are integers).

If two multiples are equally close, it rounds towards the
even choice. This is called banker’s rounding. For ex-
ample: round(1.5, 0) = 2.0 and round(2.5, 0) =
2.0.

In the puzzle type_1 is of type Float and type_2 is of
type Int, so the result is False.

7.12 Short Circuiting
Elo 1781

a = 1 > 0

184
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

if a or (1 / 0 == 0):
print('ok')

else:
print('nok')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.12. SHORT CIRCUITING 185

This puzzle shows you how the optimization of short-
circuiting works in Python.

Short circuit evaluation in any programming language is
the act of not executing unnecessary parts of a Boolean
expression.

Say, you want to calculate the result of the expression A
and B but you already know that A = False. Because
of your knowledge of the first part of the expression, you
know it evaluates to False. So the programming lan-
guage skips computation of the remaining expressions
and just returns the result.

In the first line, the expression 1 > 0 gets evaluated and
True is stored in the variable a.

An expression containing or evaluates to True if one
of the operands is True. So Python’s compiler does
not check the second operand of the or operation after
determining that the first part is True.

It’s only because of this feature, short-circuiting, that
the code actually compiles. Without it, the second part
of the or expression would raise an error because it is
not possible to divide by zero.

Therefore, the result is ok.

186
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

7.13 While Arithmetic
Elo 1619

n = 16
x = 0

while x < 3:
n /= 2
x += 1

print(n)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.14. THE LAMBDA FUNCTION 187

The core of this puzzle is the while loop which repeatedly
executes the loop body (the indented code block) as
long as the loop condition evaluates to True. Once the
condition evaluates to False the loop stops executing.

Inside the while loop we divide n by 2 and reassign the
result to n.

Remember: the result of a division (/) is of type float.

In the next step, we increment the value of x by 1. Since
x is initialized with 0, the loop is executed three times
(x=0, x=1, x=2).

Thus, n is divided by 2 three times, and the final result
is 16 / 2 / 2 / 2 = 2.0.

7.14 The Lambda Function
Elo 1601

inc = lambda x : x + 1

print(inc(2))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

188
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

With the keyword lambda, you define an anonymous
function that is not defined in the namespace.

In contrast to explicitly defined functions, a lambda
function does not have to have a specified name. In
practice, the lambda function is often used to define a
simple function in a single line of code to make it more
concise. The syntax is:

lambda <argument name> : <return expression>.

In this puzzle, we define a function inc(x) which returns
the incremented value x + 1.

After calling inc(2), the function returns 2 + 1 = 3.

7.15 Zip

Elo 1721

l1 = ['a', 'b', 'c']
l2 = [1, 2, 3]
l3 = []

for tuple in zip(l1, l2):
l3.append(tuple)

print(len(l3))

7.15. ZIP 189

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

190
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

To understand how Python’s built-in zip(x, y) func-
tion works, start with your intuition. Visualize a zipper
which takes two sides of a jacket and zips them together,
one tooth at a time. The zip function does the same
thing. It takes two lists and zips them together into one
single list of tuples which contain the paired elements.

For example, the first element of the first list is paired
with the first element of the second list. Similarly, the
second element of the first list is paired with the second
element of the second list, and so on. In a more code-like
way: [(l1[0], l2[0]), (l1[1], l2[1]), ...].

If the lists are not of equal length, the remaining values
of the longer list are omitted.

We zip together the two lists and loop over them. On
each loop, we append the element to a new, empty, list.
This results in another list which looks like this: [('a',
1),('b', 2),('c', 3)].

The length of this list is 3.

7.16 Basic Filtering
Elo 1601

list_ = list(range(5))
func = lambda x: x % 2 == 0
ns = []

7.16. BASIC FILTERING 191

for n in filter(func, list_):
ns.append(n)

print(ns)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

192
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

Using Python’s range(x) function, the puzzle first cre-
ates a list that contains the values 0, 1, 2, 3, 4.

The variable func points to a lambda expression.

If you wanted to write the lambda expression as a func-
tion, it would look like this:

def func(x):
return x % 2 == 0

The function returns True for even numbers and False
for odd numbers.

The built-in function filter takes two arguments: expression
and container. The expression is a function with
1 argument that returns either True or False. The
container is any container type e.g. list, set, dictio-
nary etc.

Filter applies expression to every element in container
and only keeps the elements that return True. In other
words, the function “filters” out the False values.

As func returns True for even numbers, this filter object
contains the even numbers from our container.

In the for loop we iterate over the filter object and ap-
pend its values to the list ns.

Thus, ns contains all even values form 0 to 4 i.e. [0,
2, 4].

7.17. LIST COMPREHENSION 193

7.17 List Comprehension
Elo 1627

list_ = list(range(4))
incs = [x + 1 for x in list_]

print(incs)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

194
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

Much like in the previous puzzle, the variable list_ is
initialized in two steps: first, create a range object with
values from 0 to 3 and then convert it to a list using the
list() function. This gives [0, 1, 2, 3].

Next, we use a powerful Python feature: the list com-
prehension.

List comprehensions are a compact way to create lists.
The simple formula is [expression + context].

• Expression: What to do with each list element?

• Context: Which list elements to select? It consists
of an arbitrary number of for and if statements.

For example, the statement [x for x in range(3)]
creates the list [0, 1, 2].

In the puzzle, we use a list comprehension to increment
each element in 'list_'. The resulting elements are
stored in the list incs.

Hence incs is [1, 2, 3, 4].

7.18 Encryption by Obfuscation
Elo 1821

encrypted = 'Dbftbs!fodszqujpo!jt!opu!tfdvsf"'

7.18. ENCRYPTION BY OBFUSCATION 195

decrypted = ''

for c in encrypted:
decrypted += chr(ord(c) - 1)

print(decrypted)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

196
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

To decrypt a given message, this puzzle uses two basic
Python functions: chr and ord.

Interestingly, these functions are provided in almost all
programming languages (thought sometimes with differ-
ent names).

The chr function returns a character corresponding to
the passed ASCII value (for example, the character 'a'
for the ASCII value of 97).

The ord function does the opposite; it returns the ASCII
value of a given character (e.g. the integer value 65
returns 'A').

First, we convert c to its ASCII value using the ord
function, then we decrement this value by 1. Finally,
we convert this back to the corresponding character with
the chr function.

The end result of our for loop is that each character in
the string 'encrypted' is shifted one letter back in the
alphabet i.e. D becomes C1.

The result is decrypted: 'Caesar encryption is not
secure!'.

1This encryption is called Caesar’s cipher because it was used
by Julius Caesar to encrypt his private conversations.

7.19. STRING DICTIONARY 197

7.19 String Dictionary
Elo 1611

dict_ = {
0: ' ', 3: 'eat', 2: 'apple',
4: 's', 1: 'Bob', 5: '.',

}

words = [1, 0, 3, 4, 0, 2, 4, 5]
sentence = ''''''

for w in words:
sentence += dict_[w]

print(sentence)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

198
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The variable dict_ has integer keys in the range 0-5
and strings as values.

The list words is initialized with keys from dict_.

The string 'sentence' is initialized as an empty string
using triple quotes ''' at both ends (the Pythonic way
to write multi-line strings).

After these initialization steps, we iterate over all num-
bers in words. For each number, we look up the corre-
sponding string in dict_ and concatenate it to sentence.

After the loop finishes, sentence contains the string
'''Bob eats apples.'''—which is output of the print
statement.

7.20 Functions are Objects
Elo 1641

def add(a, b):
return a + b

def mult(a, b):
return a * b

func_dict = {0: add, 1: mult, 2: lambda x: x + 1}

a = func_dict[0](3, -1)

7.20. FUNCTIONS ARE OBJECTS 199

b = func_dict[1](4.0, 0.5)

print(a + b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

200
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The puzzle defines two simple functions add and mult.
Each takes two arguments a and b.

We store the two functions, as well as an anonymous
lambda function, in the dictionary func_dict with keys
0, 1, and 2 respectively.

Using func_dict and bracket notation, we call the add
function like so func_dict[0]. We pass the arguments
3 and -1 which returns 3 + -1 = 2. This value is stored
in variable a.

Second, we call the mult function using func_dict[1]
with arguments 4.0 and 0.5. This returns 2.0 and it’s
stored in the variable b.

Third, we print the sum of a and b which is 2 + 2.0 =
4.0.

Note that to perform this summation, Python implicitly
converts the integer a = 2 to a float–that is 2.0. This
is because b is a float and int + float = float.

Hence, the result is the 4.0 and not 4.

7.21 Dictionary of Dictionaries

Elo 1639

customers = {
100: {'name': 'Alice', 'zip': 1234},

7.21. DICTIONARY OF DICTIONARIES 201

101: {'name': 'Bob', 'zip': 1212},
102: {'name': 'Clare', 'zip': 1001},

}

customers[101].clear()

print(len(customers))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

202
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we first define a dictionary customers.
Each value incustomers is also a dictionary containing
the name and zip-code information of a single customer.

We access the data of customer number 101 using bracket
notation customers[101] and call the clear() func-
tion. This removes all key-value pairs in the dictionary
customers[101].

So, the key 101 is now mapped to the empty dictionary
{}.

Finally, we print the length of the dictionary customers
which is 3. This is because the number of key-value pairs
in customers is still 3. Even though we have cleared the
contents of the dictionary, the key 101 still has a value,
namely the empty dictionary.

Note that if we had cleared the contents of customers
instead of customers[101], then the printed output
would have been zero.

7.22 Sorting Dictionary Keys
Elo 1667

zip_codes = {
3001: 'Dolomite',
3002: 'Goodwater',
3003: 'Montevallo',

7.22. SORTING DICTIONARY KEYS 203

3004: 'Shelby',
3000: 'Vance',

}

keys = list(zip_codes.keys())
keys.sort()

print(keys[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

204
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle defines a dictionary zip_codes with integer
keys.

First, we access all keys in the dictionary zip_codes
using the keys() method. Then we cast them into a
list using the list() function and finally assign them
to the variable keys.

At this point, the variable keys is [3001, 3002, 3003,
3004, 3000].

Second, we rearrange the integers in the list keys in
ascending order by calling the built-in sort() method
which can be called on any list object.

Third, we display the smallest of the keys by printing
keys[0] which is 3000.

7.23 Pythonic Loop Iteration
Elo 1701

prices = [0.55, 0.45, 0.35, 1.45]
items = ['cucumber', 'paprika',

'tomato', 'broccoli']

item_prices = {}

for key, value in zip(items, prices):
item_prices[key] = value

7.23. PYTHONIC LOOP ITERATION 205

print(item_prices['tomato'])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

206
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle shows you how to build a dictionary from
two lists. Here, we use the zip() function to loop over
the lists items and the prices together in a single for
loop.

On the i-th loop iteration, the variable key stores the i-
th element in the list items whereas the variable value
stores the i-th element in the list prices.

Using these key and value pairs, we gradually populate
the (initially empty) dictionary item_prices.

Finally, we print the price of 'tomato' from the dictio-
nary item_prices—which is 0.35.

7.24 Filtering with List
Comprehension

Elo 1731

item_prices = [
('car', 10000),
('boat', 7000),
('bike', 400),
('skateboard', 150),
('aircraft', 500000),

]

7.24. FILTERING WITH LIST COMPREHENSION207

my_list = [x for x in item_prices if x[1] > 9000]

print(len(my_list))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

208
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we are given a list of tuples stored in
the variable item_prices. As the name suggests, each
tuple contains the item name and its price.

After we initialize the list of tuples, we use a list com-
prehension with an if statement to filter out all those
tuples where the item’s price is less than or equal to
9000.

The resulting filtered list is stored in the variable my_list.

Only two of the items in item_prices had a price of
greater than 9000 and so the length of my_list is 2/

7.25 Aggregating with List
Comprehension

Elo 1695

prices = [
('banana', 1.5),
('apple', 2.0),
('bread', 2.0),
('milk', 1.0),
('fish', 3.5)

]

a = sum([x[1] for x in prices]) / len(prices)

7.25. AGGREGATING WITH LIST
COMPREHENSION 209

print(a)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

210
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we calculate the average of all prices.

The list prices is initialized with 5 tuples of the form
(item_name, price). W

e use a list comprehension to access the price of each
item (the second tuple element x[1]) and create a list
of floats.

Then, we sum all the float values using Python’s built-in
function sum().

Finally, we divide the result by the length of the list
prices (which is 5). The resulting float value 2.0 is
assigned to variable a.

Therefore, the printed output of a is 2.0.

7.26 Maximum of Tuples

Elo 1741

speed = [
('car', 100),
('boat', 20),
('bike', 8),
('ski', 7),
('aircraft', 650),

]

7.26. MAXIMUM OF TUPLES 211

print(max(speed)[1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

212
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

This puzzle operates on a list of tuples stored in the
variable speed. Each tuple consists of a string as the
first element and an integer as the second.

By calling the max() function on this list of tuples, the
tuples are compared to find out which is the maximum.

How can we compare two tuples—and when is a tuple
larger than another tuple?

Python compares the tuples (a,b) and (c,d) by start-
ing with the first elements a and c. If those are equal
(i.e. a==c), Python compares the next pair of tuple el-
ements b and d.

In our case, the first tuple elements are strings. Python
compares strings by looking at the Unicode values of
the characters from left to right. The tuple with the
maximum value is the one with the largest valued string.

The string 'ski' is the biggest because it starts with the
character 's' and this is further along in the alphabet
than the first letters of the other tuples.

Hence, the expression max(speed) returns ('ski', 7).

The print statement outputs the second element of this
tuple max(speed)[1] which is 7.

7.27. THE KEY ARGUMENT 213

7.27 The Key Argument
Elo 1769

speed = [
('car', 100),
('boat', 20),
('bike', 8),
('ski', 7),
('aircraft', 650),

]

print(max(speed, key=lambda x: x[1])[1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

214
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

The previous puzzle was tricky because you may have
expected that max() returns the vehicle with the highest
speed. This is what we accomplish in this puzzle. We
show you how to specify the element on which you want
to compare two tuples.

We want all comparisons to be based on the second tuple
element—that is the speed.

So, we call max() with the key argument. This specifies
a function to apply to each list and the result of this
function is used to compare elements.

In this case, we define a lambda function with one ar-
gument x (a tuple) and the return value of x[1] (the
second tuple element).

Thus, the second tuple element is the basis of compari-
son and we compare based on speed and not the string
values.

Therefore, max() returns ('aircraft', 650) as it has
the highest speed value 650.

We print this value 650 via indexing within the print
statement.

7.28 Puzzle 123

Elo 1799

7.28. PUZZLE 123 215

my_list = ['Hamburger', 'Cheeseburger']

del my_list

print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

216
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we create a new list which we immediately
remove from memory using the del operation. After
this, the list does not exist in memory anymore.

You can use the del operation to free some space in
memory if you create huge objects which you know you
won’t need anymore.

As the list does not exist in memory, the puzzle throws
a NameError.

7.29 Set Operations (1/2)
Elo 1733

set_ = set()

for number in range(100000):
set_.add(number % 4)

print(len(set_))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.30. SET OPERATIONS (2/2) 217

This puzzle gradually populates a set variable named
set_ using a for loop.

The loop repeats 100000 times and the variable number
takes values from 0 to 99999.

In each iteration, we apply the modulo operation to
number using the divisor 4.

Thus, the result of the modulo operation can only be
one of the following 4 values: 0, 1, 2, 3.

We add this result to the variable set_ by calling the
add() method.

A crucial property of the set data type is that it’s duplicate-
free. In other words, sets do not allow the occurrence of
multiple copies of the same value.

Hence, each of the four values returned by the modulo
operation can be added to the set only once: on their
first occurrence.

Because of this, the length of set_ is 4 at the end of the
for loop—the final result of the puzzle.

7.30 Set Operations (2/2)

Elo 1739

set_1 = {1, 2, 3, 4}

218
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

set_2 = {3, 4, 5, 6}

set_1 = set_1.intersection(set_2)
set_2 = set_2.difference(set_1)

print(len(set_1) + len(set_2))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.31. RECURSIVE ALGORITHM 219

This puzzle addresses two more set operations that oc-
cur frequently in practice.

We define two sets, set_1 and set_2, each of which
contains four different values.

Using Python’s built-in functions for sets, we calculate
the intersection between set_1 and set_2 i.e. all ele-
ments that exist in both sets.

The result is the set {3,4} which we store in the variable
set_1.

Next, we determine the difference between the newly
assigned set_1 and set_2.

The result of this operation is the set {5, 6} which we
store in the variable set_2.

The modified sets both contain two elements.

Therefore, printing the sum of their lengths is 4.

7.31 Recursive Algorithm

Elo 1899

numbers = [9, 2, 3, 3, 3, 7, 4, 5, 1, 6, 8]

def magic(l):
if len(l) <= 1:

220
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

return l
p = l[0]
return magic([x for x in l[1:] if x < p]) \

+ [p] \
+ magic([x for x in l[1:] if x >= p])

my_list = magic(numbers)
print(my_list)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

7.31. RECURSIVE ALGORITHM 221

This puzzle provides a recursive implementation of one
of the famous sorting algorithms: Quicksort.

Quicksort works by repeatedly breaking down the prob-
lem (a list of numbers) into smaller chunks (smaller lists
of numbers). It then applies Quicksort again on each of
those smaller chunks. These are broken down again,
and so on until we are left with the trivial case of one
element.

We define the function magic() to implement the Quick-
sort algorithm.

The variable l represents a list of values.

In our case, l is replaced by numbers which contains 11
elements.

The first part of magic deals with the special case when
l is empty or contains a single element. IN this case, it
returns the list unchanged.

Next, it breaks down l into three parts by first determin-
ing the dividing position (also called the pivot position)
and storing it in the variable p.

In our first call, the pivot variable p takes the value 9.

The function then returns a list which is a concatenation
of three new lists:

1. All values in l that are smaller than the pivot
value p.

222
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

2. The pivot value p.

3. All values in l that are greater than (or equal to)
the pivot value p.

To obtain the lists of values that are smaller than and
greater than p, we use a list comprehension with an if
condition.

The result is that magic() sorts the list numbers in
ascending order and stores it in the variable my_list.

Hence, the output of the print statement is [1, 2, 3,
3, 3, 4, 5, 6, 7, 8, 9].

7.32 Fibonacci
Elo 1809

cache = {}

def fib(n):
if n < 0:

raise ValueError

if n == 1:
return 0

elif n == 2:
return 1

7.32. FIBONACCI 223

if not n in cache:
cache[n] = fib(n-1) + fib(n-2)

return cache[n]

fib(10)

print(len(cache))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

224
CHAPTER 7. PUZZLES: INTERMEDIATE TO

PROFESSIONAL

In this puzzle, we compute the famous Fibonacci se-
quence. We use a recursive algorithm with a small but
effective optimization (caching).

Each number in the Fibonacci sequence is the sum of
the two previous numbers, starting with 0 and 1.

To determine the n-th number in the sequence, the func-
tion fib() first performs some basic checks: it ensures
that n is non-negative and that it is not one of the first
two numbers.

Then, if n is not already determined by a previous fib()
call, it computes the n-th Fibonacci number.

We achieve this by storing any newly determined Fi-
bonacci numbers in the dictionary cache.

Note that cache is initialized as an empty dictionary
outside of the function. If we initialized an empty dic-
tionary inside the function definition, that would defeat
the whole point of caching!

If n is not present in the keys of cache, it is determined
by recursively calling fib(). The arguments are (n-1)
and (n-2) and then the returned values are summed
together.

The n-th Fibonacci number is stored in cache with key
n for possible future usage.

Note that cache is never assigned the Fibonacci values
for the values n = 1 or n = 2 because their values are

7.32. FIBONACCI 225

handled by the second and third if statements in fib().

Hence, the call to fib(10) will, at most, populate cache
with keys ranging from 3-10.

Therefore, the length of cache after the call fib(10) is
8.

8

Final Remarks

Congratulations, you made it through this whole Python
workbook!

By reading this book, you have now acquired a rare
and precious skill: speed reading Python code. You
have worked through 127 Python puzzles and enhanced
your ability to think clearly. Your brain is now wired to
solve problems efficiently—one of the most important
skills you can have as a software developer (and as a
productive person overall).

Your skill level

By now, you should have a fair estimate of your skill
level in comparison to others—be sure to check out Ta-
ble 3.1 again to get the respective rank for your Elo

226

227

rating. This book is all about pushing you from be-
ginner to intermediate Python coding level. In follow-
up books, you’ll master the advanced level with harder
Python puzzles.

Consistent effort and persistence is the key to success.
If you feel that solving code puzzles has advanced your
skills, make it a daily habit to solve one Python puzzle
a day (and watch the related video on the Finxter.com
web app). This habit alone will push your coding skills
through the roof—and will ultimately provide you and
your family a comfortable living in a highly profitable
profession. Build this habit into your life—e.g., use your
morning coffee break routine—and you will soon become
one of the best programmers you know.

Where to go from here?

I publish a fresh code puzzle every couple of days on our
website https://finxter.com. All puzzles are avail-
able for free. My goal with Finxter is to make learning
to code easy, individualized, and accessible.

• I worked hard to make this book as valuable for
you as possible. But no book can reach perfection
without feedback from early adopters and highly
active readers. For any feedback, questions or

https://finxter.com

228 CHAPTER 8. FINAL REMARKS

problems you may have, please send me an email
at admin@finxter.com.

• I highly appreciate your honest book review on
your preferred bookseller (e.g. Amazon or Lean-
pub). We are not spending tons of money on ad-
vertising and rely on loyal Finxters to spread the
word. Would you mind leaving a review to share
your learning experience with others?

• To grow your Python skills on autopilot, register
for the free Python email course here: https://
blog.finxter.com/subscribe.

• You have now stretched your Python skills beyond
intermediate level. There is no reason why you
should not start selling your skills in the market-
place right now. If you want to learn how to ef-
fectively sell your skills as a Python freelancer,
watch the free “How to Build Your High-Income
Skill Python” webinar at
https://blog.finxter.com/webinar-freelancer/.

• This is the fourth book in the Coffee Break Python
series, which is all about pushing you—in your
daily coffee break—to an advanced level of Python.
Please find the other books below.

admin@finxter.com
https://blog.finxter.com/subscribe
https://blog.finxter.com/subscribe
https://blog.finxter.com/webinar-freelancer/

229

Finally, I would like to express my deep gratitude that
you have spent your time solving code puzzles and read-
ing this book. Above everything else, I value your time.
The ultimate goal of any good textbook should be to
save you time. By working through this book, you have
gained insights about your coding skill level. If you ap-
ply your Python skills to the real world, you will ex-
perience a positive return on invested time and money.
Keep investing in yourself, work on practical projects,
and stay active within the Finxter community. This is
the best way to continuously improve your Python skills.

More Python Textbooks

This Python workbook extends the "Coffee Break Python"
textbook series. It helps you master computer science
with a focus on Python coding. The other textbooks
are:

230

231

Coffee Break Python: 50 Workouts to Kickstart
Your Rapid Code Understanding in Python.

The first bestselling book of the "Coffee Break Python"
series offers 50 educative code puzzles, 10 tips for effi-
cient learning, 5 Python cheat sheets, and 1 accurate
way to measure your coding skills.

Get the ebook:
https://blog.finxter.com/coffee-break-python/

Get the print book:
http://bit.ly/cbpython

https://blog.finxter.com/coffee-break-python/
http://bit.ly/cbpython

232 MORE PYTHON BOOKS

Coffee Break NumPy: A Simple Road to Data
Science Mastery That Fits Into Your Busy Life.

Coffee Break NumPy is a new step-by-step system to
teach you how to learn Python’s data science library
faster, smarter, and better. Simply solve practical Python
NumPy puzzles as you enjoy your morning coffee.

A Simple Road to Data Science Mastery
That Fits Into Your Busy Life

MAYER, RIAZ, RIEGER

Coffee Break

NumPy

Get the ebook:
https://blog.finxter.com/coffee-break-numpy/

Get the print book:
http://bit.ly/cbnumpy

https://blog.finxter.com/coffee-break-numpy/
http://bit.ly/cbnumpy

233

Coffee Break Python Slicing: 24 Workouts to
Master Slicing in Python, Once and for All.

Coffee Break Python Slicing is all about growing your
Python expertise—one coffee at a time. The focus is on
the important technique: slicing. You use this to access
ranges of data from Python objects. Understanding slic-
ing thoroughly is crucial for your success as a Python
developer.

As a bonus, you track your Python coding skill level
throughout the book.

Coffee Break Python

Slicing

Workouts to Master Slicing in
Python, Once and for All24

Get the ebook:
https://blog.finxter.com/coffee-break-python/

https://blog.finxter.com/coffee-break-python/

234 MORE PYTHON BOOKS

Get the print book:
http://bit.ly/cbpslicing

http://bit.ly/cbpslicing

9

Bonus Chapter: 50 Workouts to
Sharpen Your Mind

Are you still hungry for more Python puzzles? Good. I
added 50 brand-new bonus puzzles to this second edition
of the book. You already know what to do, right? So
let’s get started!

9.1 Arithmetic
Puzzle 1
x = 5 // -3.0 * 4
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

235

236 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: -8.0.

9.2 Whitespace
Puzzle 2
x = len('py\tpy\n')
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.3. MODULO 237

The result of the previous puzzle is: 6.

9.3 Modulo
Puzzle 3
x = 0
while x < 4:

x += 1
if x % 2:

continue
print('$', end='')

else:
print('$', end='')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

238 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: $$$.

9.4 Tuple
Puzzle 4
x = tuple(list('hi'))
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.5. DICTIONARY 239

The result of the previous puzzle is: (’h’, ’i’).

9.5 Dictionary
Puzzle 5
d = dict([(i, i%3) for i in range(8)])
print(d[5])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

240 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 2.

9.6 Asterisk
Puzzle 6
*x, y, z = 1, 2, 3, 4
*x, y = x, y, z
print(x[1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.7. SLICING 1 241

The result of the previous puzzle is: 3.

9.7 Slicing 1
Puzzle 7
t = [10, 20, 30, 40]
t[100:103] = [10]
print(t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

242 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [10, 20, 30, 40,
10].

9.8 Slicing 2
t = [10, 20, 30, 40]
t[2:0] = [10]
print(t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.9. NESTED LOOP 243

The result of the previous puzzle is: [10, 20, 10, 30,
40].

9.9 Nested Loop
Puzzle 9
t = [2, 1, 0]
while t:

k = t.pop(0)
while t:

print(k, end='')
break

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

244 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 21.

9.10 List Arithmetic
Puzzle 10
t = [[]] * 2
t[0].append(0)
t[1].append(1)
print(t[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.11. EXCEPTION 245

The result of the previous puzzle is: [0, 1].

9.11 Exception
Puzzle 11
try:

x = -9 ** 1/2
print(x)

except:
x = 8 * 2 // 5
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

246 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: -4.5.

9.12 Insert
Puzzle 12
t = [3, 4, 5, 6]
t.insert(0, t.pop(t.index(5)))
print(t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.13. SORTED DICTIONARY 247

The result of the previous puzzle is: [5, 3, 4, 6].

9.13 Sorted Dictionary
Puzzle 13
d = {'b':1, 'a':3, 'c':2}
print(sorted(d))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

248 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [’a’, ’b’, ’c’].

9.14 Default
Puzzle 14
c = 11
d = 12

def func(a, b, c=1, d=2):
print(a, b, c, d)

func(10, c, d)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.15. KEYWORD ARGUMENT 249

The result of the previous puzzle is: 10, 11, 12, 2.

9.15 Keyword Argument
Puzzle 15
def func(a, b, c=1, d=2):

print(a, b, c, d)

func(a=1, c=3, d=4, 2)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

250 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: error.

9.16 Global
Puzzle 16
a = 10

def func(x=a):
global a
a += 1
print(x, a)

func(3)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.17. FLOW 1 251

The result of the previous puzzle is: 3, 11.

9.17 Flow 1
Puzzle 17
a = [10]

def func(a):
a.append(20)
print(a)

a = [2]
func(a)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

252 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: [2, 20].

9.18 Flow 2
Puzzle 18
a = 1
b = [10]

def func(a, b):
a += 1
b += [1]

func(a, b)
print(a in b)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.19. ENUMERATE 253

The result of the previous puzzle is: True.

9.19 Enumerate
Puzzle 19
t = {}, {1}, {1,2}, {1:2}
myList = [k for k, v in enumerate(t) \

if isinstance(v, set)]
print(myList[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

254 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 1.

9.20 Reverse
Puzzle 20
t = ['world', 'hello', 'python']
sorted_t = t.sort(reverse=True)
print(sorted_t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.21. HIERARCHICAL FUNCTIONS 255

The result of the previous puzzle is: None.

9.21 Hierarchical Functions
Puzzle 21
f = lambda x, y: x < y
result = f(f('hi', 'bye'), f(2, 3))
print(result)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

256 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: True.

9.22 Sorting++
Puzzle 22
d = {3:10, 4:8, 3:9}
print(sorted(d, key=lambda x: d[x], reverse=True))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.23. INDEXING 257

The result of the previous puzzle is: [3, 4].

9.23 Indexing
Puzzle 23
t = [[1, 2], [3, 4]]
t2 = t * 1
t[0][0] = 10
print(t2[0][0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

258 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 10.

9.24 Count
Puzzle 24
word = 'banana'
print(word.count('ana'))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.25. POWER 259

The result of the previous puzzle is: 1.

9.25 Power
Puzzle 25
x = 2 ** 1 ** 2 % -5
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

260 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: -3.

9.26 Lambda
Puzzle 26
t = ['python', 'puzzle', 'fun', 'java']
f = lambda lst: lst.pop(0)
g = lambda lst: lst.pop(1)
h = lambda lst: lst.pop(2)
d = {0:f, 1: g, 2: h}
x = d[f(t) > g(t)](t)
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.27. RECURSION 261

The result of the previous puzzle is: java.

9.27 Recursion
Puzzle 27
def f(word):

if len(word) > 3:
return '*'

else:
word += '*'
return '*' + f(word)

print(f('*'))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

262 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: ****.

9.28 Kwargs
Puzzle 28
def f(a, b, c, d=4, e=5):

print(a + b + c + d + e)

args = [10, 20]
kwargs = {'c': 30, 'd': 40}
f(*args, **kwargs)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.29. DICTIONARY MAGIC 263

The result of the previous puzzle is: 105.

9.29 Dictionary Magic
Puzzle 29
def word_dict(word):

d = {}
for char in word:

d[char] = d.get(char, 0) + 1
return d

x = word_dict('banana')['n']
print(x)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

264 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 2.

9.30 Sort Key
Puzzle 30
t = [1, 2, 3, 4, 5]
t.sort(key=lambda x: x % 2)
print(t)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.31. PRINT 265

The result of the previous puzzle is: [2, 4, 1, 3, 5].

9.31 Print
Puzzle 31
s = [('hello', 'world'), ('I', 'love', 'python')]
for x in s:

print(*x, sep='-', end='-')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

266 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is:
hello-world-I-love-python-.

9.32 Logic
Puzzle 32
easy = True and False == True and False
print(easy)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.33. ARGUMENT CONFUSION 267

The result of the previous puzzle is: False.

9.33 Argument Confusion
Puzzle 33
b = 10

def f(a, b=b):
return a + b

b = 20
print(f(1))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

268 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 11.

9.34 Pass
Puzzle 34
for i in range(5, -1, -1):

if i % 1 == 0:
pass

if i % 2 == 0:
continue

if i % 3 == 0:
break

print(i, end='-')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.35. LIST MAGIC 269

The result of the previous puzzle is: 5-.

9.35 List Magic
Puzzle 35
t = [1, 2, 3, 4, 5]
t2 = t[:]
count = 0
while True:

t.insert(0, t.pop())
count += 1
if t == t2:

break
print(count)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

270 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 5.

9.36 Zipzip
Puzzle 36
a = [1, 3]
b = [2, 4, 6]
crazy = zip(*zip(a, b))
print(list(crazy))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.37. COMPREHENSION 271

The result of the previous puzzle is: [(1, 3), (2, 4)].

9.37 Comprehension
Puzzle 37
t = [[i for i in range(j)] for j in range(4)]
print(t[2][1])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

272 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 1.

9.38 Slice Extend
Puzzle 38
t = [1, 2, 3]
t.append(t.extend([4, 5]))
print(t[-2:])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.39. MAX 273

The result of the previous puzzle is: [5, None].

9.39 Max
Puzzle 39
t = 'iPhone', 'Italy', '10', '2'
print(max(t))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

274 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: iPhone.

9.40 Zip
Puzzle 40
x = 1, 2
y = list(zip(x))
print(y[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.41. UNPACK 275

The result of the previous puzzle is: (1,).

9.41 Unpack
Puzzle 41
a = [1]
b = [2, 4, 6]
crazy = zip(*zip(a, b))
y = list(crazy)
print(y[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

276 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: (1,).

9.42 Minimax
Puzzle 42
def f(x, y):

x, y = min(x, y), max(x, y)
if y % x == 0:

return x
else:

return f(x, y % x)

print(f(16, 72))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.43. SORT 277

The result of the previous puzzle is: 8.

9.43 Sort
Puzzle 43
scores = [100, 84, 63, 97]
scores_sorted = scores.sort()
print(scores[0])

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

278 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 63.

9.44 Tuple List
Puzzle 44
lst = [(k, k*2) for k in range(4)]
print(len(lst))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.45. WHILE 279

The result of the previous puzzle is: 4.

9.45 While
Puzzle 45
i = 2
while i % 3:

i += 2
print('!', end='-')

print('!')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

280 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: !-!-!.

9.46 String Logic
Puzzle 46
print('a' and 'b')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.47. UNORTHODOX DICT 281

The result of the previous puzzle is: b.

9.47 Unorthodox Dict
Puzzle 47
pairs = {[1,2]:[2,4,6],

[10,20]:[20,40,60]}

s = []
for x in pairs:

s += x

print(len(s))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

282 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: error.

9.48 Count
Puzzle 48
ones = [(1),

(1,),
(1,1)]

print(ones.count(1))

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.49. CUT 283

The result of the previous puzzle is: 1.

9.49 Cut
Puzzle 49
hair = 100

def cut(times, each=10, hair=hair):
return (hair - each * times)

hair = 50
hair = cut(2, 20)
print(hair)

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

284 CHAPTER 9. 50 BONUS WORKOUTS

The result of the previous puzzle is: 60.

9.50 End
Puzzle 50
if 1 < 2 is True:

print('nice', end=' ')
if 'A' < 'a' is True:

print('bravo', end=' ')
else:

print('great')

What’s the output of this code snippet?
Correct: +10 Elo points / Wrong: -10 Elo points

9.50. END 285

The result of the previous puzzle is: great.

