
DevOps in
Python

Infrastructure as Python
—
Moshe Zadka

www.allitebooks.com

DevOps in Python
Infrastructure as Python

Moshe Zadka

www.allitebooks.com

Moshe Zadka
Belmont, CA, USA

DevOps in Python: Infrastructure as Python

ISBN-13 (pbk): 978-1-4842-4432-6 ISBN-13 (electronic): 978-1-4842-4433-3
https://doi.org/10.1007/978-1-4842-4433-3

Copyright © 2019 by Moshe Zadka

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4432-6. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

To A and N, my favorite two projects — even when they need
immediate maintenance at 4 a.m.

www.allitebooks.com

v

Table of Contents

Chapter 1: Installing Python ��� 1

1.1 OS Packages ... 1

1.2 Using Pyenv .. 2

1.3 Building Python from Source .. 4

1.4 PyPy .. 5

1.5 Anaconda .. 5

1.6 Summary... 6

Chapter 2: Packaging ��� 7

2.1 Pip ... 7

2.2 Virtual Environments ... 9

2.3 Setup and Wheels ... 11

2.4 Tox ... 13

2.5 Pipenv and Poetry ... 18

2.5.1 Poetry ... 18

2.5.2 Pipenv ... 19

2.6 DevPI ... 20

2.7 Pex and Shiv ... 23

2.7.1 Pex .. 24

2.7.2 Shiv ... 26

2.8 XAR ... 26

2.9 Summary... 27

About the Author ��� ix

About the Technical Reviewer ��� xi

Acknowledgments ��� xiii

Introduction ���xv

www.allitebooks.com

vi

Chapter 3: Interactive Usage �� 29

3.1 Native Console .. 29

3.2 The Code Module .. 31

3.3 ptpython .. 32

3.4 IPython .. 32

3.5 Jupyter Lab ... 34

3.6 Summary... 38

Chapter 4: OS Automation �� 39

4.1 Files .. 39

4.2 Processes .. 43

4.3 Networking.. 47

4.4 Summary... 50

Chapter 5: Testing ��� 51

5.1 Unit Testing ... 51

5.2 Mocks, Stubs, and Fakes .. 56

5.3 Testing Files .. 57

5.4 Testing Processes ... 62

5.5 Testing Networking ... 67

Chapter 6: Text Manipulation �� 71

6.1 Bytes, Strings, and Unicode .. 71

6.2 Strings ... 73

6.3 Regular Expressions ... 76

6.4 JSON ... 80

6.5 CSV .. 82

6.6 Summary... 84

Chapter 7: Requests ��� 85

7.1 Sessions .. 85

7.2 REST .. 87

7.3 Security ... 89

Table of ConTenTs

vii

7.4 Authentication ... 92

7.5 Summary... 94

Chapter 8: Cryptography �� 95

8.1 Fernet .. 95

8.2 PyNaCl ... 97

8.3 Passlib... 102

8.4 TLS Certificates ... 105

8.5 Summary... 110

Chapter 9: Paramiko ��� 111

9.1 SSH Security ... 111

9.2 Client Keys .. 112

9.3 Host Identity .. 114

9.4 Connecting .. 115

9.5 Running Commands .. 116

9.6 Emulating Shells ... 117

9.7 Remote Files ... 118

9.7.1 Metadata Management .. 118

9.7.2 Upload .. 119

9.7.3 Download .. 119

9.8 Summary... 119

Chapter 10: Salt Stack �� 121

10.1 Salt Basics .. 121

10.2 Salt Concepts .. 126

10.3 Salt Formats .. 129

10.4 Salt Extensions ... 132

10.4.1 States ... 132

10.4.2 Execution .. 135

10.4.3 Utility .. 135

10.4.4 Extra Third-Party Dependencies ... 137

10.5 Summary... 137

Table of ConTenTs

viii

Chapter 11: Ansible �� 139

11.1 Ansible Basics ... 139

11.2 Ansible Concepts ... 142

11.3 Ansible Extensions .. 144

11.4 Summary... 145

Chapter 12: Docker ��� 147

12.1 Image Building .. 148

12.2 Running ... 149

12.3 Image Management .. 150

12.4 Summary... 150

Chapter 13: Amazon Web Services ��� 151

13.1 Security ... 152

13.1.1 Configuring Access Keys .. 152

13.1.2 Creating Short-Term Tokens ... 153

13.2 Elastic Computing Cloud (EC2) .. 154

13.2.1 Regions ... 154

13.2.2 Amazon Machine Images.. 155

13.2.3 SSH Keys .. 155

13.2.4 Bringing Up Machines .. 156

13.2.5 Securely Logging In .. 157

13.2.6 Building Images .. 158

13.3 Simple Storage Service (S3) ... 159

13.3.1 Managing Buckets .. 160

13.4 Summary... 163

Index ��� 165

Table of ConTenTs

ix

About the Author

Moshe Zadka has been part of the open source community

since 1995 and has been involved with DevOps since before

the term became mainstream. One of two collaborators in

the Facebook bootcamp Python class, he made his first core

Python contributions in 1998, and is a founding member of

the Twisted open source project. He has also given tutorials

and talks at several recent PyCon conferences and is a

co-author of Expert Twisted (Apress, 2019).

xi

About the Technical Reviewer

Paul Ganssle is a software developer at Bloomberg and

frequent contributor to open source projects. Among other

projects, he maintains the Python libraries dateutil and

setuptools. He holds a PhD in Physical Chemistry from the

University of California, Berkeley; and a BS in Chemistry

from the University of Massachusetts, Amherst.

xiii

Acknowledgments

Thanks to my wife, Jennifer Zadka, without whose support I could not have done it.

Thanks to my parents, Yaacov and Pnina Zadka, who taught me how to learn.

Thanks to my advisor, Yael Karshon, for teaching me how to write.

Thanks to Mahmoud Hashemi for inspiration and encouragement.

Thanks to Mark Williams for always being there for me.

Thanks to Glyph Lefkowitz for teaching me things about Python, about

programming, and about being a good person.

xv

Introduction

Python was started as a language to automate an operating system: the Amoeba. Since

it had an API, not just textual files representations, a typical UNIX shell would be ill

suited. The Amoeba OS is now a relic. However, Python continues to be a useful tool for

automation of operations – the heart of typical DevOps work. It is easy to learn and easy

to write readable code in – a necessity, when a critical part of the work is responding to

a 4 a.m. alert, and modifying some misbehaving program. It has powerful bindings to C

and C++, the universal languages of operating systems – and yet is natively memory safe,

leading to few crashes at the automation layer.

Finally, although not true when it was originally created, Python is one of the most

popular languages. This means that it is relatively easy to hire people with Python

experience, and easy to get training materials and courses for people who need to learn

on the job.

This book will guide you through how to take advantage of Python to automate

operations.

 What to Expect in the Book
There are many sources that teach Python, the language: books, tutorials, and even free

videos online. Basic familiarity with the language will be assumed here. However, for the

typical SRE/DevOps person, there are a lot of aspects of Python that few sources cover,

except for primary documentation and various blogs. We cover those early on in the

book.

The first step in using Python is not writing a “hello world” program. The first step

is installing it. There, already, we are faced with various choices, with various trade-offs

between them. We will cover using the preinstalled version of Python, using ready-made,

third-party prebuilt packages, installing Python from sources, and other alternatives.

One of Python’s primary strengths, which any program slightly longer than “hello

world” will take advantage of, is its rich third-party library ecosystem. We will cover

xvi

how to use these packages, how to develop a workflow around using specific versions

of packages and when to upgrade, and what tools are used to manage that. We will also

cover packaging our own code, whether for open source distribution or for internal

dissemination.

Finally, Python was built for exploration. Coming from the Lisp tradition of the

REPL (Read-Eval-Print Loop), using Python interactively is a primary way to explore

the language, the libraries, and even the world around us. Whether the world is made

of planets and atoms, or virtual machines and containers, the same tools can be used

to explore it. Being a DevOps-oriented book, we cover it more from the perspective of

exploring a world of virtual machines, services, and containers.

InTroduCTIon

1
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_1

CHAPTER 1

Installing Python
Before we start using Python, we need to install it. Some operating systems, like Mac

OS X and some Linux variants, have Python preinstalled. Those versions of Python,

colloquially called “system Python,” often make poor defaults for people who want to

develop in Python.

For one thing, the version of Python installed is often behind latest practices. For

another, system integrators will often patch Python in ways that can lead to surprises

later. For example, Debian-based Python is often missing modules like venv and

ensurepip. Mac OS X Python links against a Mac shim around its native SSL library.

What those things means, especially when starting out and consuming FAQs and web

resources, is that it is better to install Python from scratch.

We cover a few ways to do so and the pros and cons of each.

1.1 OS Packages
For some of the more popular operating systems, volunteers have built ready-to-install

packages.

The most famous of these is the “deadsnakes” PPA (Personal Package Archives).

The “dead” in the name refers to the fact that those packages are already built – with the

metaphor that sources are “alive.” Those packages are built for Ubuntu and will usually

support all the versions of Ubuntu that are still supported upstream. Getting those

packages is done simply:

$ sudo add-apt-repository ppa:deadsnakes/ppa

$ sudo apt update

2

On Mac OS, the homebrew third-party package manager will have Python packages

that are up to date. An introduction to Homebrew is beyond the scope of this book. Since

Homebrew is a rolling release, the version of Python will get upgraded from time to time.

While this means that it is a useful way to get an up-to-date Python, it makes for a poor

target for reliably distributing tools.

It is also a choice with some downsides for doing day-to-day development. Since it

upgrades quickly after a new Python releases, this means development environments

can break quickly and without warning. It also means that sometimes code can stop

working: even if you are careful to watch upcoming Pythons for breaking changes, not

all packages will. Homebrew Python is a good fit when needing a well-built, up-to-date

Python interpreter for a one-off task. Writing a quick script to analyze data, or automate

some APIs, is a good use of Homebrew Python.

Finally, for Windows, it is possible to download an installer from Python.org for any

version of Python.

1.2 Using Pyenv
Pyenv tend to be the highest Return on Investment for installing Python for local

development. The initial setup does have some subtleties. However, it allows installing

as many Python versions side by side as are needed. It allows managing how one will be

accessed: on either per-user default or a per-directory default.

Installing pyenv itself depends on the operating system. On a Mac OS X, the easiest

way is to install it via Homebrew. Note that in this case, pyenv itself might need to be

upgraded to install new versions of Python.

On a UNIX-based operating system, such as Linux or FreeBSD, the easiest way to

install pyenv is by using the curl|bash command:

$ PROJECT=https://github.com/pyenv/pyenv-installer \

 PATH=raw/master/bin/pyenv-installer \

 curl -L $PROJECT/PATH | bash

Of course, this comes with its own security issues and could be replaced with a

two-step process:

$ git clone https://github.com/pyenv/pyenv-installer

$ cd pyenv-installer

$ bash pyenv-installer

Chapter 1 InstallIng python

3

where one can inspect the shell script before running, or even use git checkout to pin

to a specific revision.

Sadly, pyenv does not work on Windows.

After installing pyenv, it is useful to integrate it with the running shell. We do this by

adding to the shell initialization file (for example, .bash_profile):

export PATH="~/.pyenv/bin:$PATH"

eval "$(pyenv init -)"

eval "$(pyenv virtualenv-init -)"

This will allow pyenv to properly intercept all needed commands.

Pyenv separates the notion of installed interpreters from available interpreters. In

order to install a version,

$ pyenv install <version>

For CPython, <version> is just the version number, such as 3.6.6 or 3.7.0rc1.

An installed version is distinct from an available version. Versions can be available

either “globally” (for a user) by using

$ pyenv global 3.7.0

or locally by using

$ pyenv local 3.7.0

Local means they will be available in a given directory. This is done by putting a

file python-version.txt in this directory. This is important for version-controlled

repositories, but there are a few different strategies to manage those. One is to add this

file to the “ignored” list. This is useful for heterogenous teams of open source projects.

Another is to check this file in, so that the same version of Python is used in this

repository.

Note that pyenv, since it is designed to install versions of Python side by side, has no

concept of “upgrading” Python. In order to use a newer Python, it needs to be installed

with pyenv and then set as the default.

Chapter 1 InstallIng python

4

By default, pyenv installs non-optimized versions of Python. If optimized versions

are needed,

env PYTHON_CONFIGURE_OPTS="--enable-shared

 --enable-optimizations

 --with-computed-gotos

 --with-lto

 --enable-ipv6" pyenv install

will build a version that is pretty similar to binary versions from python.org.

1.3 Building Python from Source
The main challenge in building Python from source is that, in some sense, it is too

forgiving. It is all too easy to build it with one of the built-in modules disabled because

its dependency was not detected. This is why it is important to know what dependencies

are that fragile, and how to make sure a local installation is good.

The first fragile dependency is ssl. It is disabled by default and must be enabled in

Modules/Setup.dist. Carefully follow the instructions there about the location of the

OpenSSL library. If you have installed OpenSSL via system packages, it will usually be in

/usr/. If you have installed it from source, it will usually be in /usr/local.

The most important thing is to know how to test for it. When Python is done

building, run ./python.exe -c 'import _ssl'. That .exe is not a mistake – this is how

the build process calls the just-built executable, which is renamed to python during

installation. If this succeeds, the ssl module was built correctly.

Another extension that can fail to build is sqlite. Since it is a built-in, a lot of third-

party packages depend on it, even if you are not using it yourself. This means a Python

installation without the sqlite module is pretty broken. Test by running ./python.exe

-c 'import sqlite3'.

In a Debian-based system (such as Ubuntu), libsqlite3-dev is required for this

to succeed. In a Red Hat-based system (such as Fedora or CentOS), libsqlite3-dev is

required for this to succeed.

Next, check for _ctypes with ./python.exe -c 'import _ctypes'. If this fails, it is

likely that the libffi headers are not installed.

Finally, remember to run the built-in regression test suite after building from source.

This is there to ensure that there have been no silly mistakes while building the package.

Chapter 1 InstallIng python

5

1.4 PyPy
The “usual” implementation of Python is sometimes known as “CPython,” to distinguish

it from the language proper. The most popular alternative implementation is PyPy. PyPy

is a Python-based JIT implementation of Python in Python. Because it has a dynamic JIT

(Just in Time) compilation to assembly, it can sometimes achieve phenomenal speed-

ups (3x or even 10x) over regular Python.

There are sometimes challenges in using PyPy. Many tools and packages are

tested only with CPython. However, sometimes spending the effort to check if PyPy is

compatible with the environment is worth it if performance matters.

There are a few subtleties in installing Python from source. While it is theoretically

possible to “translate” using CPython, in practice the optimizations in PyPy mean that

translating using PyPy works on more reasonable machines. Even when installing from

source, it is better to first install a binary version to bootstrap.

The bootstrapping version should be PyPy, not PyPy3. PyPy is written in the

Python 2 dialect. It is one of the only cases where worrying about the deprecation is

not relevant, since PyPy is a Python 2 dialect interpreter. PyPy3 is the Python 3 dialect

implementation, which is usually better to use in production as most packages are

slowly dropping support for Python 2.

The latest PyPy3 supports 3.5 features of Python, as well as f-strings. However, the

latest async features, added in Python 3.6, do not work.

1.5 Anaconda
The closest to a “system Python” that is still reasonable for use as a development

platform is the Anaconda Python. Anaconda is a so-called “meta-distribution.” It is,

in essence, an operating system on top of the operating system. Anaconda has its

grounding in the scientific computing community, and so its Python comes with easy-

to- install modules for many scientific applications. Many of these modules are nontrivial

to install from PyPI, requiring a complicated build environment.

It is possible to install multiple Anaconda environments on the same machine. This

is handy when needing different Python versions or different versions of PyPI modules.

In order to bootstrap Anaconda, we can use the bash installer, available from

https://conda.io/miniconda.html. The installer will also modify ~/.bash_profile to

add the path to conda, the installer.

Chapter 1 InstallIng python

6

Conda environments are created using conda create --name <name>, and activated

using source conda activate <name>. There is no easy way to use unactivated

environments. It is possible to create a conda environment while installing packages in

it: conda create --name some-name python. We can specify the version using = – conda

create --name some-name python=3.5. It is also possible to install more packages into

a conda environment, using conda install package[=version], after the environment

has been activated. Conda has a lot of pre-built Python packages, especially ones that are

nontrivial to build locally. This makes it a good choice if those packages are important to

your use case.

1.6 Summary
Running Python program requires an interpreter installed on the system. Depending

on the operating system, and needed versions, there are several different ways to install

Python. Using the system Python is a problematic option. On Mac and UNIX systems,

using pyenv is almost always the preferred option. On Windows, using the prepackaged

installers from python.org is often a good idea.

Chapter 1 InstallIng python

7
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_2

CHAPTER 2

Packaging
Much of dealing with Python in the real world is dealing with third-party packages.

For a long time, the situation was not good. Things have improved dramatically, however.

It is important to understand which “best practices” are antiquated rituals, which ones

are based on faulty assumptions but have some merit, and which are actually good ideas.

When dealing with packaging, there are two ways to interact. One is to be a

“consumer,” wanting to use the functionality from a package. Another is to be the

“producer,” publishing a package. These describe, usually, different development tasks,

not different people.

It is important to have a solid understanding of the “consumer” side of packages

before moving to “producing.” If the goal of a package publisher is to be useful to the

package user, it is crucial to imagine the “last mile” before starting to write a single

line of code.

2.1 Pip
The basic packaging tool for Python is pip. By default, installations of Python do

not come with pip. This allows pip to move faster than core Python – and work with

alternative Python implementations, like PyPy. However, they do come with the useful

ensurepip module. This allows getting pip via python -m ensurepip. This is usually the

easiest way to bootstrap pip.

Some Python installations, especially system ones, disable ensurepip. When lacking

ensurepip, there is a way of manually getting it: get-pip.py. This is a downloadable

single file that, when executed, will unpack pip.

Luckily, pip is the only package that needs these weird gyrations to install. All other

packages can, and should, be installed using pip. This includes upgrading pip itself,

which can be done with pip install --upgrade pip.

8

Depending on how Python was installed, its “real environment” might or might not

be modifiable by our user. Many instructions in various README files and blogs might

encourage doing sudo pip install. This is almost always the wrong thing to do: it will

install the packages in the global environment.

It is almost always better to install in virtual environments – those will be covered

later. As a temporary measure, perhaps to install things needed to create a virtual

environment, we can install to our user area. This is done with pip install --user.

The pip install command will download and install all dependencies. However,

it can fail to downgrade incompatible packages. It is always possible to install explicit

versions: pip install package-name==<version> will install this precise version. This

is also a good way to get explicitly non-general-availability packages, such as release

candidates, beta, or similar, for local testing.

If wheel is installed, pip will build, and usually cache, wheels for packages. This is

especially useful when dealing with a high virtual environment churn, since installing a

cached wheel is a fast operation. This is also especially useful when dealing with so-

called “native,” or “binary,” packages – those that need to be compiled with a C compiler.

A wheel cache will eliminate the need to build it again.

pip does allow uninstalling, with pip uninstall. This command, by default,

requires manual confirmation. Except for exotic circumstances, this command is

not used. If an unintended package has snuck in, the usual response is to destroy the

environment and rebuild it. For similar reasons, pip install --ugprade is not often

needed: the common response is to destroy and re-create the environment. There is one

situation where it is a good idea: pip install --upgrade pip. This is the best way to get

a new version of pip with bug fixes and new features.

pip install supports a “requirements file,” pip install --requirements or pip

install -r. A requirements file simply has one package per line. This is no different

than specifying packages on the command line. However, requirements files often

specify “strict dependencies.” A requirements file can be generated from an environment

with pip freeze. The usual way to get a requirements file is, in a virtual environment, to

do the following:

$ pip install -e .

$ pip freeze > requirements.txt

This means the requirements file will have the current package, and all of its

recursive dependencies, with strict versions.

Chapter 2 paCkaging

9

2.2 Virtual Environments
Virtual environments are often misunderstood, because the concept of

“environments” is not clear. A Python environment refers to the root of the Python

installation. The reason it is important is because of the subdirectory lib/site-

packages. The lib/site- packages directory is where third-party packages are

installed. In modern times, they are often installed by pip. While there used to be

other tools to do it, even bootstrapping pip and virtualenv can be done with pip, let

alone day-to-day package management.

The only common alternative to pip is system packages, where a system Python is

concerned. In the case of an Anaconda environment, some packages might be installed

as part of Anaconda. In fact, this is one of the big benefits of Anaconda: many Python

packages are custom built, especially those which are nontrivial to build.

A “real” environment is one that is based on the Python installation. This means

that to get a new real environment, we must reinstall (and often rebuild) Python.

This is sometimes an expensive proposition. For example, tox will rebuild an

environment from scratch if any parameters are different. For this reason, virtual

environments exist.

A virtual environment copies the minimum necessary out of the real environment to

mislead Python into thinking that it has a new root. The exact details are not important,

but what is important is that this is a simple command that just copies files around (and

sometimes uses symbolic links).

There are two ways to use virtual environments: activated and unactivated. In

order to use an unactivated virtual environment, which is most common in scripts and

automated procedures, we explicitly call Python from the virtual environment.

This means that if we created a virtual environment in /home/name/venvs/my-

special- env, we can call /home/name/venvs/my-special-env/bin/python to work

inside this environment. For example, /home/name/venvs/my-special-env/bin/python

-m pip will run pip but install in the virtual environment. Note that for entry-point-

based scripts, they will be installed alongside Python, so we can run /home/name/venvs/

my-special-env/bin/pip to install packages in the virtual environment.

The other way to use a virtual environment is to “activate” it. Activating a virtual

environment in a bash-like shell means sourcing its activate script:

$ source /home/name/venvs/my-special-env/bin/activate

Chapter 2 paCkaging

10

The sourcing sets a few environment variables, only one of which is actually

important. The important variable is PATH, which gets prefixed by /home/name/venvs/

my-special-env/bin. This means that commands like python or pip will be found there

first. There are two cosmetic variables that get set: VIRTUAL_ENV will point to the root of

the environment. This is useful in management scripts that want to be aware of virtual

environments.

PS1 will get prefixed with (my-special-env), which is useful for a visual indication

of the virtual environment while working interactively in the console.

In general, it is a good practice to only install third-party packages inside a virtual

environment. Combined with the fact that virtual environments are “cheap,” this means

that if one gets into a bad state, it is easy to just remove the whole directory and start

from scratch. For example, imagine a bad package install that causes Python startup to

fail. Even running pip uninstall is impossible, since pip fails on startup. However, the

“cheapness” means we can remove the whole virtual environment and re-create it with a

good set of packages.

Modern practice, in fact, is moving more and more toward treating virtual

environments as semi-immutable: after creating them, there is a single stage of “install

all required packages.” Instead of modifying it if an upgrade is required, we destroy the

environment, re-create, and reinstall.

There are two ways to create virtual environments. One way is portable between

Python 2 and Python 3 – virtualenv. This needs to be bootstrapped in some way,

since Python does not come with virtualenv preinstalled. There are several ways to

accomplish this. If Python was installed using a packaging system, such as a system

packager, Anaconda, or Homebrew, then often the same system will have packaged

virtualenv. If Python is installed using pyenv, in a user directory, sometimes just using

pip install directly into the “original environment” is a good option, even though it

is an exception to the “only install into virtual environments.” Finally, this is one of the

cases pip install --user might be a good idea: this will install the package into the

special “user area.” Note that this means that sometimes it will not be in $PATH, and the

best way to run it will be using python-m virtualenv.

If no portability is needed, venv is a Python 3-only way of creating a virtual

environment. It is accessed as python -m venv, as there is no dedicated entry point. This

solves the “bootstrapping” problem of how to install virtualenv, especially when using

a nonsystem Python.

Chapter 2 paCkaging

11

Whichever command is used to create the virtual environment, it will create the

directory for the environment. It is best if this directory does not exist before that. A best

practice is to remove it before creating the environment. There are also options about

how to create the environment: which interpreter to use and what initial packages to

install. For example, sometimes it is beneficial to skip pip installation entirely. We can

then bootstrap pip in the virtual environment by using get-pip.py. This is a way to

avoid a bad version of pip installed in the real environment – since if it is bad enough, it

cannot even be used to upgrade pip.

2.3 Setup and Wheels
The term “third party” (as in “third-party packages”) refers to a someone other than the

Python core developers (“first party”) or the local developers (“second party”). We have

covered how to install “first-party” packages in the installation section. We used pip

and virtualenv to install “third-party” packages. It is time to finally turn our attention

to the missing link: local development and installing local packages, or “second-party”

packages.

This is an area seeing a lot of new additions, like pyproject.toml and flit. However,

it is important to understand the classic way of doing things. For one, it takes a while

for new best practices to settle in. For another, existing practices are based on setup.

py, and so this way will continue to be the main way for a while – possibly even for the

foreseeable future.

The setup.py file describes, in code, our “distribution.” Note that “distribution”

is distinct from “package.” A package is a directory with (usually) __init__.py

that Python can import. A distribution can contain several packages or even none!

However, it is a good idea to keep a 1-1-1 relationship: one distribution, one package,

named the same.

Usually, setup.py will begin by importing setuptools or distutils. While

distutils is built-in, setuptools is not. However, it is almost always installed first in

a virtual environment, due to its sheer popularity. Distutils is not recommended: it has

not been updated for a long time. Notice that setup.py cannot meaningfully, explicitly

declare it needs setuptools nor explicitly request a specific version: by the time it is

read, it will have already tried to import setuptools. This non-declarativeness is part of

the motivation for packaging alternatives.

Chapter 2 paCkaging

12

The absolutely minimal setup.py that will work is the following:

import setuptools

setuptools.setup(

 packages=setuptools.find_packages(),

)

The official documentation calls a lot of other fields “required” for some reason,

though a package will be built even if those are missing. For some, this will lead to ugly

defaults, such as the package name being UNKNOWN.

A lot of those fields, of course, are good to have. But this skeletal setup.py is enough

to create a distribution with the local Python packages in the directory.

Now, granted, almost always, there will be other fields to add. It is definitely the case

that other fields will need to be added if this package is to be uploadable to a packaging

index, even if it is a private index.

It is a great idea to add at least a “name” field. This will give the distribution a name.

As mentioned earlier, it is almost always a good idea to name it after the single top-level

package in the distribution.

A typical source hierarchy, then, will look like this:

setup.py

 import setuptools

 setuptools.setup(

 name='my_special_package',

 packages=setuptools.find_packages(),

)

my_special_package/

 __init__.py

 another_module.py

 tests/

 test_another_module.py

Another field that is almost always a good idea is a version. Versioning software is,

as always, hard. Even a running number, though, is a good way to answer the perennial

question: “Is this running a newer or older version?”

There are some tools to help with managing the version number, especially

assuming we want to have it also available to Python during runtime. Especially if doing

Calendar Versioning, incremental is a powerful package to automate some of the

Chapter 2 paCkaging

13

tedium. bumpversion is a useful tool, especially when choosing semantic versioning.

Finally, versioneer supports easy integration with the git version control system, so that

a tag is all that needs to be done for release.

Another popular field in setup.py, which is not marked “required” in the

documentation but is present on almost every package, is install_requires. This is

how we mark other distributions that our code uses. It is a good practice to put “loose”

dependencies in setup.py. This is in contrast to exact dependencies, which specify a

specific version. A loose dependency looks like Twisted>=17.5 – specifying a minimum

version but no maximum. Exact dependencies, like Twisted==18.1, are usually a bad

idea in setup.py. They should only be used in extreme cases: for example, when using

significant chunks of a package’s private API.

Finally, it is a good idea to give find_packages a whitelist of what to include, in order

to avoid spurious files. For example,

setuptools.find_packages(include=["my_package∗"])

Once we have setup.py and some Python code, we want to make it into a

distribution. There are several formats a distribution can take, but the one we will

cover here is the wheel. If my-directory is the one that has setup.py, running pip

wheel my-directory, will produce a wheel, as well as the wheels of all of its recursive

dependencies.

The default is to put the wheels in the current directory, which is seldom the desired

behavior. Using --wheel-dir<output-directory> will put the wheel in the directory – as

well as the wheels of any distribution it depends on.

There are several things we can do with the wheel, but it is important to note that one

thing we can do is pip install <wheel file>. If we add pip install <wheel file>

--wheel-dir <output directory>, then pip will use the wheels in the directory and

will not go out to PyPI. This is useful for reproducible installs, or support for air-gapped

modes.

2.4 Tox
Tox is a tool to automatically manage virtual environments, usually for tests and builds.

It is used to make sure that those run in well-defined environments and is smart about

caching them in order to reduce churn. True to its roots as a test-running tool, Tox is

configured in terms of test environments.

Chapter 2 paCkaging

14

It uses a unique ini-based configuration format. This can make writing

configurations difficult, since remembering the subtleties of the file format can be hard.

However, in return, there is a lot of power that, while being hard to tap, can certainly help

in configuring tests and build runs that are clear and concise.

One thing that Tox does lack is a notion of dependencies between build steps. This

means that those are usually managed from the outside, by running specific test runs

after others and sharing artifacts in a somewhat ad hoc manner.

A Tox environment corresponds, more or less, to a section in the configuration file.

[testenv:some-name]

.

.

.

Note that if the name contains pyNM (for example, py36), then Tox will default to

using CPython N.M (3.6, in this case) as the Python for that test environment. If the name

contains pypyNM, Tox will default to using PyPy N.M for that version – where these stand

for “version of CPython compatibility,” not PyPy’s own versioning scheme.

If the name does not include pyNM or pypyNM, or if there is a need to override the

default, a basepython field in the section can be used to indicate a specific Python

version. By default, Tox will look for these Pythons to be available in the path. However, if

the plug-in tox-pyenv is installed, Tox will query pyenv if it cannot find the right Python

on the path.

As examples, we will analyze one simple Tox file and one more complicated one.

[tox]

envlist = py36,pypy3.5,py36-flake8

The tox section is a global configuration. In this example, the only global

configuration we have is the list of environments.

[testenv:py36-flake8]

This section configures the py36-flake8 test environment.

deps =

 flake8

Chapter 2 paCkaging

15

The deps subsection details which packages should be installed in the test

environment’s virtual environment. Here we chose to specify flake8 with a loose

dependency. Another option is to specify a strict dependency (e.g., flake8==1.0.0.).

This helps with reproducible test runs. We could also specify -r <requirements file>

and manage the requirements separately. This is useful if we have other tooling that

takes the requirements file.

commands =

 flake8 useful

In this case, the only command is to run flake8 on the directory useful. By default,

a Tox test run will succeed if all commands return a successful status code. As something

designed to run from command lines, flake8 respects this convention and will only exit

with a successful status code if there were no problems detected with the code.

[testenv]

The other two environments, lacking specific configuration, will fall back to the

generic environment. Note that because of their names, they will use two different

interpreters: CPython 3.6 and PyPy with Python 3.5 compatibility.

deps =

 pytest

In this environment, we install the pytest runner. Note that in this way, our tox.

ini documents the assumptions on the tools needed to run the tests. For example, if our

tests used Hypothesis or PyHamcrest, this is where we would document it.

commands =

 pytest useful

Again, the command run is simple. Note, again, that pytest respects the convention

and will only exit successfully if there were no test failures.

As a more realistic example, we turn to the tox.ini of ncolony:

[tox]

envlist = {py36,py27,pypy}-{unit,func},py27-lint,py27-wheel,docs

toxworkdir = {toxinidir}/build/.tox

Chapter 2 paCkaging

16

We have more environments. Note that we can use the {} syntax to create a

matrix of environments. This means that {py36,py27,pypy}-{unit,func} creates

3*2=6 environments. Note that if we had a dependency that made a “big jump” (for

example, Django 1 and 2), and we wanted to test against both, we could have made

{py36,py27, pypy}-{unit,func}-{django1,django2}, for a total of 3*2*2=12

environments. Notice the numbers for a matrix test like this climb up fast – and when

using an automated test environment, it means things would either take longer or

need higher parallelism.

This is a normal trade-off between comprehensiveness of testing and resource use.

There is no magical solution other than to carefully consider how many variations to

officially support.

[testenv]

Instead of having a testenv per variant, we choose to use one test environment but

special case the variants by matching. This is a fairly efficient way to create many variants

of test environments.

deps =

 {py36,py27,pypy}-unit: coverage

 {py27,pypy}-lint: pylint==1.8.1

 {py27,pypy}-lint: flake8

 {py27,pypy}-lint: incremental

 {py36,py27,pypy}-{func,unit}: Twisted

We need coverage only for the unit tests, while Twisted is needed for both the unit

and functional tests. The pylint strict dependency ensures that as pylint adds more

rules, our code does not acquire new test failures. This does mean we need to update

pylint manually from time to time.

commands =

 {py36,py27,pypy}-unit: python -Wall \

 -Wignore::DeprecationWarning \

 -m coverage \

 run -m twisted.trial \

 --temp-directory build/_trial_temp \

 {posargs:ncolony}

Chapter 2 paCkaging

17

 {py36,py27,pypy}-unit: coverage report --include ncolony∗ \
 --omit ∗/tests/∗,∗/interfaces∗,∗/_version∗ \
↪ --show-missing --fail-under=100

 py27-lint: pylint --rcfile admin/pylintrc ncolony

 py27-lint: python -m ncolony tests.nitpicker

 py27-lint: flake8 ncolony

 {py36,py27,pypy}-func: python -Werror -W ignore::DeprecationWarning \

 -W ignore::ImportWarning \

 -m ncolony tests.functional_test

Configuring “one big test environment” means we need to have all our commands

mixed in one bag and select based on patterns. This is also a more realistic test run

command – we want to run with warnings enabled, but disable warnings we do not

worry about, and also enable code coverage testing. While the exact complications will

vary, we almost always need enough things so that the commands will grow to a decent

size.

[testenv:py27-wheel]

skip_install = True

deps =

 coverage

 Twisted

 wheel

 gather

commands =

 mkdir -p {envtmpdir}/dist

 pip wheel . --no-deps --wheel-dir {envtmpdir}/dist

 sh -c "pip install --no-index {envtmpdir}/dist/∗.whl"
 coverage run {envbindir}/trial \

 --temp-directory build/_trial_temp {posargs:ncolony}

 coverage report --include ∗/site-packages/ncolony∗ \
 --omit ∗/tests/∗,∗/interfaces∗,∗/_version∗ \
 --show-missing --fail-under=100

The py27-wheel test run ensures we can build, and test, a wheel. As a side effect, this

means a complete test run will build a wheel. This allows us to upload a tested wheel to

PyPI when it is release time.

Chapter 2 paCkaging

18

[testenv:docs]

changedir = docs

deps =

 sphinx

 Twisted

commands =

 sphinx-build -W -b html -d {envtmpdir}/doctrees . {envtmpdir}/html

basepython = python2.7

The documentation build is one of the reasons why Tox shines. It only installs

sphinx in the virtual environment for building documentation. This means that an

undeclared dependency on sphinx would make the unit tests fail, since sphinx is not

installed there.

2.5 Pipenv and Poetry
Pipenv and Poetry are two new ways to produce Python projects. They are inspired

by tools like yarn and bundler for JavaScript and Ruby, respectively, which aim to

encode a more complete development flow. By themselves, they are not a replacement

for Tox – they do not encode the ability to run with multiple Python interpreters, or

completely override the dependency. However, it is possible to use them, in tandem

with a CI- system configuration file, like Jenkinsfile or .circleci/config.yml, to

build against multiple environments.

However, their main strength is in allowing easier interactive development. This is

useful, sometimes, for more exploratory programming.

2.5.1 Poetry
The easiest way to install poetry is to use pip install --user poetry. However, this

will install all of its dependencies into your user environment, which has the potential

to make a mess of things. One way to do it in a clean way is to create a dedicated virtual

environment.

$ python3 -m venv ~/.venvs/poetry

$ ~/.venvs/poetry/bin/pip install poetry

$ alias poetry=~/.venvs/poetry/bin/poetry

Chapter 2 paCkaging

19

This is an example of using an unactivated virtual environment.

The best way to use poetry is to create a dedicated virtual environment for the

project. We will build a small demo project. We will call it “useful.”

$ mkdir useful

$ cd useful

$ python3 -m venv build/useful

$ source build/useful/bin/activate

(useful)$ poetry init

(useful)$ poetry add termcolor

(useful)$ mkdir useful

(useful)$ touch useful/__init__.py

(useful)$ cat > useful/__main__.py

import termcolor

print(termcolor.colored("Hello", "red"))

If we have done all this, running python -m useful in the virtual environment will

print a red Hello. After we have interactively tried various colors, and maybe decided to

make the text bold, we are ready to release:

(useful)$ poetry build

(useful)$ ls dist/

useful-0.1.0-py2.py3-none-any.whl useful-0.1.0.tar.gz

2.5.2 Pipenv
Pipenv is a tool to create virtual environments that match a specification, in addition to

ways to evolve the specification. It relies on two files: Pipfile and Pipfile.lock. We can

install pipenv similarly to how we installed poetry – in a custom virtual environment

and add an alias.

In order to start using it, we want to make sure no virtual environments are activated.

Then,

$ mkdir useful

$ cd useful

$ pipenv add termcolor

Chapter 2 paCkaging

20

$ mkdir useful

$ touch useful/__init__.py

$ cat > useful/__main__.py

import termcolor

print(termcolor.colored("Hello", "red"))

$ pipenv shell

(useful-hwA3o_b5)$ python -m useful

This will leave in its wake a Pipfile that looks like this:

[[source]]

url = "https://pypi.org/simple"

verify_ssl = true

name = "pypi"

[packages]

termcolor = "∗"

[dev-packages]

[requires]

python_version = "3.6"

Note that in order to package useful, we still have to write a setup.py. Pipenv limits

itself to managing virtual environments, and it does consider building and publishing

separate tasks.

2.6 DevPI
DevPI is a PyPI-compatible server that can be run locally. Though it does not scale to

PyPI-like levels, it can be a powerful tool in a number of situations.

DevPI is made up of three parts. The most important one is devpi-server. For many

use cases, this is the only part that needs to run. The server serves, first and foremost,

as a caching proxy to PyPI. It takes advantage of the fact that packages on PyPI are

immutable: once we have a package, it can never change.

Chapter 2 paCkaging

21

There is also a web server that allows us to search in the local package directory.

Since a lot of use cases do not even involve searching on the PyPI website, this is

definitely optional. Finally, there is a client command-line tool that allows configuring

various parameters on the running instance. The client is most useful in more esoteric

use cases.

Installing and running DevPI is straightforward. In a virtual environment,

simply run:

(devpi)$ pip install devpi-server

(devpi)$ devpi-server --start --init

The pip tool, by default, goes to pypi.org. For some basic testing of DevPI, we can

create a new virtual environment, playground, and run:

(playground)$ pip install \

 -i http://localhost:3141/root/pypi/+simple/ \

 httpie glom

(playground)$ http --body https://httpbin.org/get | glom '{"url":"url"}'

{

 "url": "https://httpbin.org/get"

}

Having to specify the -i ... argument to pip every time would be annoying.

After checking that everything worked correctly, we can put the configuration in an

environment variable:

$ export PIP_INDEX_URL=http://localhost:3141/root/pypi/+simple/

Or to make things more permanent:

$ mkdir -p ~/.pip && cat > ~/.pip/pip.conf << EOF

[global]

index-url = http://localhost:3141/root/pypi/+simple/

[search]

index = http://localhost:3141/root/pypi/

The above file location works for UNIX operating systems. On Mac OS X the

configuration file is $HOME/Library/Application Support/pip/pip.conf. On Windows

the configuration file is %APPDATA%\pip\pip.ini.

Chapter 2 paCkaging

22

DevPI is useful for disconnected operations. If we need to install packages without a

network, DevPI can be used to cache them. As mentioned earlier, virtual environments

are disposable and often treated as mostly immutable. This means that a virtual

environment with the right packages is not a useful thing without a network. The

chances are high that some situation or the other will either require or suggest creating it

from scratch.

However, a caching server is a different matter. If all package retrieval is done

through a caching proxy, then destroying a virtual environment and rebuilding it is fine,

since the source of truth is the package cache. This is as useful for taking a laptop into the

woods for disconnected development as it is for maintaining proper firewall boundaries

and having a consistent record of all installed software.

In order to “warm up” the DevPI cache, that is, make sure it contains all needed

packages, we need to use pip to install them. One way to do it is, after configuring DevPI

and pip, is to run tox against a source repository of software under development. Since

tox goes through all test environments, it downloads all needed packages.

It is definitely a good practice to also preinstall in a disposable virtual environment

any requirements.txt that are relevant.

However, the utility of DevPI is not limited to disconnected operations.

Configuring one inside your build cluster, and pointing the build cluster at it,

completely avoids the risk for a “leftpad incident,” where a package you rely on gets

removed by the author from PyPI. It might also make builds faster, and it will definitely

cut out a lot of outgoing traffic.

Another use for DevPI is to test uploads, before uploading them to PyPI. Assuming

devpi-server is already running on the default port, we can:

(devpi)$ pip install devpi-client twine

(devpi)$ devpi use http://localhost:3141

(devpi)$ devpi user -c testuser password=123

(devpi)$ devpi login testuser --password=123

(devpi)$ devpi index -c dev bases=root/pypi

(devpi)$ devpi use testuser/dev

(devpi)$ twine upload --repository http://localhost:3141/testuser/dev \

 -u testuser -p 123 my-package-18.6.0.tar.gz

(devpi)$ pip install -i http://localhost:3141/testuser/dev my-package

Chapter 2 paCkaging

23

Note that this allows us to upload to an index that we only use explicitly, so we are

not shadowing my-package for all environments that are not using this explicitly.

An even more advanced use-case, we can do this:

(devpi)$ devpi index root/pypi mirror_url=https://ourdevpi.local

This will make our DevPI server a mirror of a local, “upstream,” DevPI server. This

allows us to upload private packages to the “central” DevPI server, in order to share with

our team. In those cases, the upstream DevPI server will often need to be run behind a

proxy – and we need to have some tools to properly manage user access.

Running a “centralized” DevPI behind a simple proxy that asks for username and

password allows an effective private repository. For that, we would first want to remove

the root/pypi index:

$ devpi index --delete root/pypi

and then re-create it with

$ devpi index --create root/pypi

This means the root index no longer will mirror pypi. We can upload packages

now directly to it. This type of server is often used with the argument --extra-index-

url to pip, to allow pip to retrieve both from the private repository and the external

one. However, sometimes it is useful to have a DevPI instance that only serves specific

packages. This allows enforcing rules about auditing before using any packages.

Whenever a new package is needed, it is downloaded, audited, and then added to the

private repository.

2.7 Pex and Shiv
While it is currently nontrivial to compile a Python program into one self-contained

executable, we can do something that is almost as good. We can compile a Python

program into a single file that only needs an installed interpreter to run. This takes

advantage of the particular way Python handles startup.

When running python /path/to/filename, Python does two things:

• Adds the directory /path/to to the module path.

• Executes the code in /path/to/filename.

Chapter 2 paCkaging

24

When running python/path/to/directory/, Python will behave exactly as though

we typed python/path/to/directory/__main__.py.

In other words, Python will do the following two things:

• Add the directory /path/to/directory/ to the module path.

• Executes the code in /path/to/directory/__main__.py.

When running python /path/to/filename.zip, Python will treat the file as a directory.

In other words, Python will do the following two things:

• Add the “directory” /path/to/filename.zip to the module path.

• Executes the code in the __main__.py it extracts from /path/to/

filename.zip.

Zip is an end-oriented format: The metadata, and pointers to the data, are all at the

end. This means that adding a prefix to a zip file does not change its contents.

So, if we take a zip file, and prefix it with #!/usr/bin/python<newline>, and mark

it executable, then when running it, Python will be running a zip file. If we put the right

bootstrapping code in __main__.py, and put the right modules in the zip file, we can get

all of our third-party dependencies in one big file.

Pex and Shiv are tools for producing such files, but they both rely on the same

underlying behavior of Python and of zip files.

2.7.1 Pex
Pex can be used either as a command-line tool or as a library. When using it as a

command-line tool, it is a good idea to prevent it from trying to do dependency

resolution against PyPI. All dependency resolution algorithms are flawed in some

way. However, due to pip’s popularity, packages will explicitly work around flaws in its

algorithm. Pex is less popular, and there is no guarantee that packages will try explicitly

to work with it.

The safest thing to do is to use pip wheel to build all wheels in a directory and then

tell Pex to use only this directory.

For example,

$ pip wheel --wheel-dir my-wheels -r requirements.txt

$ pex -o my-file.pex --find-links my-wheels --no-index \

 -m some_package

Chapter 2 paCkaging

25

Pex has a few ways to find the entry point. The two most popular ones are -m

some_package, which will behave as though python -m some_package; or -c console-

script, which will find what script would have been installed as console-script, and

invoke the relevant entry point.

It is also possible to use Pex as a library.

from pex import pex_builder

Most of the logic to build Pex files is in the pex_builder module.

builder = pex_builder.PEXBuilder()

We create a builder object.

builder.set_entry_point('some_package')

We set the entry point. This is equivalent to the -m some_package argument on the

command line.

builder.set_shebang(sys.executable)

The Pex binary has a sophisticated argument to determine the right shebang line.

This is sometimes specific to the expected deployment environment, so it is a good idea

to put some thought into the right shebang line. One option is /usr/bin/env python,

which will find what the current shell calls python. It is sometimes a good idea to specify

a version here, such as /usr/local/bin/python3.6, for example.

subprocess.check_call([sys.executable, '-m', 'pip', 'wheel',

 '--wheel-dir', 'my-wheels',

 '--requirements', 'requirements.txt'])

Once again, we create wheels with pip. As tempting as it is, pip is not usable as a

library, so shelling out is the only supported interface.

for dist in os.listdir('my-wheels'):

 dist = os.path.join('my-wheels', dist)

 builder.add_dist_location(dist)

We add all packages that pip built.

builder.build('my-file.pex')

Finally, we have the builder produce a Pex file.

Chapter 2 paCkaging

26

2.7.2 Shiv
Shiv is a modern take on the same ideas behind Pex. However, since it uses pip directly,

it needs to do a lot less itself.

$ shiv -o my-file.shiv -e some_package -r requirements.txt

Because shiv just offloads to pip actual dependency resolution, it is safe to call it

directly. Shiv is a younger alternative to Pex. This means a lot of cruft has been removed,

but it is still lacking somewhat in maturity.

For example, the documentation for command-line arguments is a bit thin. There is

also no way to currently use it as a library.

2.8 XAR
XAR (eXecutable ARchive) is a generic format for shipping self-contained executables.

While not being Python specific, it is designed as Python first. It is natively installable via

PyPI, for example.

The downsides of XAR is that it assumes a certain level of system support for fuse

(Filesystem in User SpacE) that is not universal yet. This is not a problem if all machines

designed to run the XAR, Linux, or Mac OS X are under your control. The instructions for

how to install proper FUSE support are not complex, but they do require administrative

privileges. Note that XAR is also less mature than Pex.

However, assuming proper SquashFS support, many other concerns vanish:

including, most importantly, compared to pex or shiv, local Python versions. This

makes XAR an interesting choice for either shipping developer tools or local system

management scripts.

In order to build a XAR, we can call setup.py with bdist_xar, if xar is installed.

python setup.py bdist_xar --console-scripts=my-script

In this example, my-script is the name of a console script entry point, specified in

the setup.py with the following:

entry_points=dict(

 console_scripts=["my-script = package.module:function"],

)

Chapter 2 paCkaging

27

In some cases, the --console-scripts argument is not necessary. If, as in the

example above, there is only one console script entry point, then it is implied. Otherwise,

if there is a console script with the same name as the package, then that one is used. This

accounts for quite a few cases, which means this argument is often redundant.

2.9 Summary
Much of the power of Python comes from its powerful third-party ecosystems: whether

for data science or networking code, there are many good options. Understanding how

to install, use, and update third-party packages are crucial to using Python well.

With private package repositories, using Python packages for internal libraries, and

distributing them in a way compatible with open source libraries, is often a good idea. It

allows using the same machinery for internal distribution, versioning, and dependency

management.

Chapter 2 paCkaging

29
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_3

CHAPTER 3

Interactive Usage
Python is often used for exploratory programming. Often, the final result is not the

program but an answer to a question. For scientists, the question might be “what is the

likelihood of a medical intervention working?” For people troubleshooting computers,

the question might be “which log file has the message I need?”

However, regardless of the question, Python can often be a powerful tool to answer it.

More importantly, in exploratory programming, we expect to encounter more questions,

based on the answer.

The interactive model in Python comes from the original Lisp environments’

“Read-Eval-Print Loop” (REPL, for short). The environment reads a Python

expression, evaluates it in an environment that persists in memory, prints the result,

and loops back.

The REPL environment native to Python is popular because it is built in. However, a

few third-party REPL tools are even more powerful, built to do things that the native one

could not or would not. These tools give a powerful way to interact with the operating

system, exploring and molding until the desired state is achieved.

3.1 Native Console
Launching python without any arguments will open up the “interactive console.” It is a

good idea to use pyenv or a virtual environment to make sure that the Python version is

up to date.

The availability of an interactive console immediately, without installing anything

else, is one reason why Python is suited for exploratory programming. We can

immediately ask questions.

The questions can be trivial:

>>> 2 + 2

4

30

They can be used to calculate sales tax in the Bay area:

>>> rate = 9.25

>>> price = 5.99

>>> after_tax = price ∗ (1 + rate / 100.)
>>> after_tax

6.544075

Or they can answer important questions about the operating environment:

>>> import os

>>> os.path.isfile(os.path.expanduser("~/.bashrc"))

True

Using the Python native console without readline is unpleasant. Rebuilding Python

with readline support is a good idea, so that the native console will be useful. If this is

not an option, using one of the alternative consoles is recommended. For example, a

locally built Python with specific options might not include readline, and it might be

problematic to redistribute a new Python to the entire team.

If readline support is installed, Python will use it to support line editing and history.

It is also possible to save the history using readline.write_history_file. This is often

after having used the console for a while, in order to have a reference for what has been

done, or to copy whatever ideas worked into a more permanent form.

When using the console, the _ variable will have the value of the last expression-

statement evaluated. Note that exceptions, statements that are not expressions and

statements stat are expressions that evaluate to None will not change the value of _. This

is useful during an interactive session when only after having seen the representation of

the value, do we realize we needed that as an object.

>>> import requests

>>> requests.get("http://en.wikipedia.org")

<Response [200]>

>>> a=_

>>> a.text[:50]

'<!DOCTYPE html>\n<html class="client-nojs" lang="en'

Chapter 3 InteraCtIve Usage

31

Only after using the .get function, we realize that what we actually wanted was

the text. Luckily, the Response object is saved in the variable _. We put the value of the

variable in a immediately, _ is replaced quickly. As soon as we evaluate a.text[:50],

_ is now a 50-character string. If we had not saved _ in a variable, all but the first 50

characters would have been lost.

Notice that this _ convention is kept by every good Python REPL, and so the

trick to “keep returned values in one-letter variables” is often useful when doing

explorations.

3.2 The Code Module
The code module allows us to run our own interactive loop. An example of when this can

be useful is when running commands with a special flag, we can drop into a prompt at a

specific point. This allows us to have a REPL environment after we have set things up in

a certain way. This holds for both inside the interpreter, setting up the namespace with

useful things; and in the external environment, perhaps initializing files or setting up

external services.

The highest-level use of code is the interact function.

>>> import code

>>> code.interact(banner="Welcome to the special interpreter",

... local=dict(special=[1, 2, 3]))

Welcome to the special interpreter

>>> special

[1, 2, 3]

>>> ^D

now exiting InteractiveConsole...

>>> special

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'special' is not defined

This shows an example of running a REPL loop with a variable special, which sets to

a short list.

Chapter 3 InteraCtIve Usage

32

For the lowest-level use of code, if you want to own the UI yourself, code.compile_

command(source, [filename="<input>"], symbol="single") will return a code object

(that can be passed to exec), None if the command is incomplete or raise SyntaxError,

OverflowError, or ValueError if there is a problem with the command.

The symbol argument should almost always be "single." The exception is if the user

is prompted to enter code that will evaluate to an expression (for example, if the value is

to be used by the underlying system). In that case, symbol should be set to "eval."

This allows us to manage interacting with the user ourselves. It can be integrated

with a UI, or a remote network interface, to allow interactivity in any environment.

3.3 ptpython
The ptpython tool, short for “prompt toolkit Python,” is an alternative to the built-in

REPL. It uses the prompt toolkit for console interaction, instead of readline.

Its main advantage is the simplicity of installation. A simple pip install ptpython

in a virtual environment and regardless of readline build problems, a high-quality

Python REPL appears.

ptpython supports completion suggestions, multiline editing, and syntax

highlighting.

On startup, it will read ~/.ptpython/config.py. This means it is possible to locally

customize ptpython in arbitrary ways. The way to configure is to implement a function,

configure, which accepts an object (of type PythonRepl) and mutates it.

There are a lot of possibilities, and sadly the only real documentation is the source

code. The relevant reference __init__ is ptpython.python_input.PythonInput. Note

that config.py really is an arbitrary Python file. Therefore, if you want to distribute

modifications internally, it is possible to distribute a local PyPI package and have people

import a configure function from it.

3.4 IPython
IPython, which is also the foundation of Jupyter, which will be covered later, is an

interactive environment whose roots are in the scientific computing community.

IPython is an interactive command prompt, similar to the ptpython utility or Python’s

native REPL.

Chapter 3 InteraCtIve Usage

33

However, it aims to give a sophisticated environment. One of the things that it does

is number every input and output from the interpreter. It is useful to be able to refer to

those numbers later. IPython puts all inputs in the In array and outputs in the Out array.

This allows for nice symmetry: if IPython says In[4], for example, this is how to access

that value.

In [1]: print("hello")

hello

In [2]: In[1]

Out[2]: 'print("hello")'

In [3]: 5 + 4.0

Out[3]: 9.0

In [4]: Out[3] == 9.0

Out[4]: True

It also supports tab completion out of the box. IPython uses both its own completion

and the jedi library for static completion.

It also supports built-in help. Typing var_name? will try to find the best context-

relevant help for the object in the variable, and display it. This works for functions,

classes, built-in objects, and more.

In [1]: list?

Init signature: list(self, /, ∗args, ∗∗kwargs)
Docstring:

list() -> new empty list

list(iterable) -> new list initialized from iterable's items

Type: type

IPython also supports something called “magic,” where prefixing a line with % will

execute a magic function. For example, %run will run a Python script inside the current

namespace. As another example, %edit will launch an editor. This is useful if during

usage, a statement needs more sophisticated editing.

In addition, prefixing a line with ! will run a system command. One useful way to take

advantage of this is !pip install something. This is why it is useful to install IPython

inside virtual environments that are used for interactive development.

Chapter 3 InteraCtIve Usage

34

IPython can be customized in a number of ways. While in an interactive session,

the %config magic command can be used to change any option. For example, %config

InteractiveShell.autocall = True will set the autocall option, which means

expressions that are callable are called, even without parentheses. This is moot for any

options that only affect startup. We can change these options, as well as any others, using

the command line. For example, ipython --InteractiveShell.autocall=True, will

launch into an autocalling interpreter.

If we want custom logic to decide on configuration, we can run IPython from a

specialized Python script.

from traitlets import config

import IPython

my_config = config.Config()

my_config.InteractiveShell.autocall = True

IPython.start_ipython(config=my_config)

If we package this in a dedicated Python package, we can distribute it to a team using

either PyPI or a private package repository. This allows having a homogenous custom

IPython configuration for a development team.

Finally, configuration can also be encoded in profiles, which are Python snippets

located under ~/.ipython by default. The profile directory can be modified by an explicit

command-line parameter --ipython-dir or an environment variable IPYTHONDIR.

3.5 Jupyter Lab
Jupyter is a project that uses web-based interaction to allow for sophisticated exploratory

programming. It is not limited to Python, though it does originate in Python. The

name stands for “Julia/Python/R,” the three languages most popular for exploratory

programming, especially in data science.

Jupyter Lab, the latest evolution of Jupyter, was originally based on IPython. It now

sports a full-featured web interface and a way to remotely edit files. The main users of

Jupyter tend to be scientists. They take advantage of the ability to see how results were

derived to add in reproducibility and peer review.

Chapter 3 InteraCtIve Usage

35

Reproducibility and peer review are also important for DevOps work. The ability

to show the steps that led to deciding which list of hosts to restart, so that it can be

regenerated if circumstances change, for example, is highly useful. The ability to attach a

notebook, detailing the steps that were taken during an outage, together with the output

from the steps, to a postmortem analysis can aid in understanding what happened, and

how to avoid a problem in the future or recover from it more effectively.

It is important to note here that notebooks are not an auditability tool: they can be

executed out of order and have blocks modified and re-executed. However, properly

used, they allow us to record what has been done.

Jupyter allows true exploratory programming. This is useful for scientists, who might

not understand the true scope of a problem beforehand.

It is important to note here that notebooks are not an auditability tool: they can be

executed out of order and have blocks modified and re-executed. However, properly

used, they allow us to record what has been done. This is also useful for systems

integrators, faced with complex systems, where it is hard to predict where the problem

lies before exploration, either.

Installing Jupyter Lab in a virtual environment is a simple matter of doing pip

install jupyterlab. When starting jupyter lab, by default, it will start a web

server on an open port starting at 8888 and attempt to launch a web browser to

watch it. If working on an environment that is “too interesting” (for example, the

default web browser is not configured properly), the standard output will contain a

preauthorized URL to access the server. If all else fails, it is possible to copy-paste the

token printed to standard output into the browser after manually entering the URL

in a web browser. It is also possible to access the token with jupyter notebook list,

which will list all currently running servers.

Once inside Jupyter Lab, there are five things we can launch:

• Console

• Terminal

• Text editor

• Notebook

• Spreadsheet editor

Chapter 3 InteraCtIve Usage

36

The Console is a web-based interface to IPython. All that was said about IPython

previously (for example, the In and Out arrays). The Terminal is a full-fledged terminal

emulator in the browser. This is useful for a remote terminal inside a VPN: all it needs as far

as connectivity needs is an open web port, and it can also be protected in the regular ways

that web ports are protected: TLS, client-side certificates, and more. The text editor is useful

for editing remote files. This is an alternative to running a remote shell, and an editor such as

vi in it. It has the advantage of avoiding UI lag, while still having full file-editing capabilities.

The most interesting thing to launch, though, is a notebook: indeed, many a session

will using nothing but notebooks. A notebook is a JSON file that records a session. As

the session unfolds, Jupyter will save “snapshots” of the notebook, as well as the latest

version. A notebook is made of a sequence of Cells. The two most popular cell types are

“code” and “Markdown.” A “code” cell type will contain a Python code snippet. It will

execute it in the context of the session’s namespace. The namespace is persistent from

one cell execution to the other, corresponding to a “kernel” running. The kernel accepts

cell content using a custom protocol, interprets them as Python, executes them, and

returns both whatever was returned by the snippet as well as output from this.

When launching a Jupyter server, by default, it will use the local IPython kernel as

its only possible kernel. This means that the server will, for example, only be able to use

the same Python version and the same set of packages. However, it is possible to connect

a kernel from a different environment to this server. The only requirement is that the

environment has the ipykernel package installed. From the environment, run:

python -m ipykernel install \

 --name my-special-env \

 --display-name "My Env"

 --prefix=$DIRECTORY

Then, from the Jupyter server environment, run:

jupyter kernelspec install $DIRECTORY/jupyter/kernels/my-special-env

This will cause the Jupyter server in this environment to support the kernel from

the special environment. This allows running one semipermanent Jupyter server and

connecting kernels from any environment that is “interesting”: installing specific

modules, running a specific version of Python, or any other difference. One other usage

of alternative kernels, which will not be covered here in details, is alternative languages.

Chapter 3 InteraCtIve Usage

37

Julia and R kernels are supported upstream, but there exist third-party kernels for many

languages – even bash!

Jupyter supports all magic commands from IPython. Especially useful, again, is

the !pip install ... command to install new packages in the virtual environment.

Especially if being careful, and installing precise dependencies, this makes a

notebook be high-quality documentation of how to achieve a result in a way that is

replayable.

Since Jupyter is one level of indirection away from the kernel, we can restart the

kernel directly from Jupyter. This means the whole Python process gets restarted, and

any in-memory results are gone. We can re-execute cells in any order, but there is a

single-button way to execute all cells in order. Restarting the kernel, and executing all

cells in order, is a nice way of “testing” a notebook for working conditions – although,

naturally, any effects on the external world will not be reset.

Jupyter notebooks are useful as attachments to tickets and postmortems, both as a

way of documenting specific remediations, as well as documenting “state of things” by

running query APIs and collecting the results in the notebook. Usually, when attaching

a notebook in such a way, it is useful to also export it to a more easily readable format,

such as HTML or PDF, and attach that as well. However, more and more tools integrate

direct notebook viewing, making this step redundant. For example, GitHub projects and

Gists already render notebooks directly.

Alongside the notebooks, Jupyter Lab sports a rudimentary, but functional, browser-

based remote development environment. The first part is a remote file manager. Among

other things, this allows uploading and downloading files. One use for it, among many,

is the ability to upload notebooks from the local computer and download them back

again. There are better ways to manage notebooks, but in a pinch, being able to retrieve

a notebook is extremely useful. Similarly, any persistent outputs from Jupyter, such as

processed data files, images, or charts, can also be downloaded.

Next, alongside the notebooks, is a remote IPython console. Though of limited use

next to the notebook, there are still some cases where using the console is easier. A

session that requires a lot of short commands can be more keyboard-centric by using the

IPython console, and thus more efficient.

There is also a file editor. Although it is a far cry from being a full-fledged developer

editor, lacking thorough code understanding and completion, it is often useful in a

pinch. It allows directly editing files on the remote Jupyter host. One use case is directly

fixing library code that the notebook is using, and then restarting the kernel. While

Chapter 3 InteraCtIve Usage

38

integrating it into a development flow takes some care, as an emergency measure to fix

and continue, this is invaluable.

Last, there is a remote browser-based terminal. Between the terminal, the file editor

and the file manager, a running Jupyter server allows complete browser-based remote

access and management, even before thinking of the notebooks. This is important to

remember for security implications, but it is also a powerful tool whose various uses

we will explore later. For now, suffice it to say, the power that using a Jupyter notebook

brings to remote system administration tasks is hard to overestimate.

3.6 Summary
The faster the feedback cycle, the faster we can deploy new, tested, solutions. Using

Python interactively allows getting the quickest possible feedback: immediate.

This is often useful to clarify a library’s documentation, a hypothesis about a running

system, or just your understanding of Python.

The interactive console is also a powerful control panel from which to launch

computations when the end result is not well understood: for example, when debugging

the state of software systems.

Chapter 3 InteraCtIve Usage

39
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_4

CHAPTER 4

OS Automation
Python was initially built to automate a distributed operating system called an “amoeba.”

Though the Amoeba OS is mostly forgotten, Python has found a home in automating

UNIX-like operating systems tasks.

Python wraps the traditional UNIX C API lightly, giving full access to the system calls

that run UNIX while making them just a little safer to use: an approach that was dubbed

“C with foam padding.” This willingness to wrap low-level operating system APIs has

made it a good choice for the wide berth between the programs that UNIX shell is good

for, and the programs the C programming language is good for.

As the saying goes, with great power comes great responsibility. In order to allow for

programmer power and flexibility, Python does not stop programmers from wreaking

havoc. Carefully using Python to write programs that work and, more importantly, break

in predictable, safe ways is a skill that is worth mastering.

4.1 Files
It has been a long time since “everything is a file” was an accurate mantra on UNIX.

Nevertheless, many things are files, and even more things are enough like files that

manipulating them with file-based system calls works.

When dealing with files’ contents, Python programs can go down one of two routes.

They can open them as “text” or as “binary.” Although files themselves are neither text

nor binary, just a blob of bytes, the opening mode is important.

When opening a file as binary, the bytes are read and written as is – as byte strings.

This is useful with files that are non-textual, such as picture files.

When opening a file as text, an encoding has to be used. It can be specified explicitly,

but in certain situations, defaults apply. All bytes read from the file are decoded, and the

code receives a character string. All strings written to the file are encoded to bytes. This

means the interface with the file is with strings – sequences of characters.

40

A simple example of a binary file is the GIMP “XCF” internal format. GIMP is an

image manipulation program, and it saves files in its internal XCF format with more

details than images have. For example, layers in the XCF will be separate, for easy

editing.

>>> with open("Untitled.xcf", "rb") as fp:

... header = fp.read(100)

Here we open a file. The rb argument stands for “read, binary.” We read the first

hundred bytes. We will need far fewer, but this is often a useful tactic. Many files have

some metadata at the beginning.

>>> header[:9].decode('ascii')

'gimp xcf '

The first nine characters can actually be decoded to ASCII text, and happen to be the

name of the format.

>>> header[9:9+4].decode('ascii')

'v011'

The next four characters are the version. This file is the 11th version of XCF.

>>> header[9+4]

0

A 0 byte finishes the “what is this file” metadata. This has various advantages.

>>> struct.unpack('>I', header[9+4+1:9+4+1+4])

(1920,)

The next four bytes are the width, as a number in big-endian format. The struct

module knows how to parse these. The > says it is big endian, and the I says it is an

unsigned 4-byte integer.

>>> struct.unpack('>I', header[9+4+1+4:9+4+1+4+4])

(1080,)

The next four bytes are the width. This simple code gave us the high-level data: it

confirmed that this is XCF, it showed what version of the format it is, and we could see

the dimensions of the image.

Chapter 4 OS autOmatiOn

41

When opening files as text, the default encoding is UTF-8. One advantage of UTF-8

is that it is designed to fail quickly if something is not UTF-8: it is carefully designed to

fail on ISO-8859-[1-9], which predates Unicode, as well as on most binary files. It is also

backwards compatible with ASCII, which means pure ASCII files will still be valid UTF-8.

The most popular way to parse text files is line by line, and Python supports that by

having an open text file be an iterator that yields the lines in order.

>>> fp = open("things.txt", "w")

>>> fp.write("""\

... one line

... two lines

... red line

... blue line

... """)

39

>>> fp.close()

>>> fpin = open("things.txt")

>>> next(fpin)

'one line\n'

>>> next(fpin)

'two lines\n'

>>> next(fpin)

'red line\n'

>>> next(fpin)

'blue line\n'

>>> next(fpin)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

Usually we will not call next directly, but use for. Additionally, usually we use files

as context managers, to make sure they close at a well-understood point. However,

especially in REPL scenarios, there is a trade-off: opening the file without a context

manager allows us to explore reading bits and pieces.

Files on a unix system are more than just blobs of data. They have various metadata

attached, which can be queried and sometimes changed.

Chapter 4 OS autOmatiOn

42

The rename system call is wrapped in the os.rename Python function. Since rename is

atomic, this can help implement operations that require a certain state.

In general, note that the os module tends to be a thin wrapper over operating system

calls. The discussion here is relevant to UNIX-like systems: Linux, BSD-based systems,

and, for the most part, Mac OS X. It is worth keeping in mind, but it is not worth pointing

each place where we are making UNIX-specific assumptions.

For example,

with open("important.tmp", "w") as fout:

 fout.write("The horse raced past the barn")

 fout.write("fell.\n")

os.rename("important.tmp", "important")

This ensures that when reading the important file, we do not accidentally

misunderstand the sentence. If the code crashes in the middle, instead of believing

that the horse raced past the barn, we get nothing from important. We only rename

important.tmp to important at the end, after the last word has been written to the file.

The most important example of a file-which-is-not-a-blob, in UNIX, is a directory.

The os.makedirs function allows us to ensure a directory exists easily with

os.makedirs(some_path, exists_ok=True)

This combines powerfully with the path operations from os.path to allow safe

creation of a nested file:

def open_for_write(fname, mode=""):

 os.makedirs(os.path.dirname(fname), exists_ok=True)

 return open(fname, "w" + mode)

with open_for_write("some/deep/nested/name/of/file.txt") as fp:

 fp.write("hello world")

This can come in useful, for example, when mirroring an existing file layout.

The os.path module has, mostly, string manipulation functions that assume

strings are file names. The dirname function returns the directory name, so os.path.

dirname("a/b/c") would return a/b. Similarly, the function basename returns the “file

name,” so os.path.basename("a/b/c") would return c. The inverse of both is the os.

path.join function, which join paths: os.path.join("some", "long/and/winding",

"path") would return some/long/and/finding/path.

Chapter 4 OS autOmatiOn

43

Another set of functions in the os.path module has a slightly higher-level abstraction

for getting file metadata. It is important to note that these functions are often light

wrappers around operating system functionality, and do not try to hide operating system

quirks. This means that operating system quirks can “leak” through the abstraction.

The biggest metadata is os.path.exists: does the file exist? This comes in handy

sometimes, though often it is better to write code in a way that is agnostic of file

existence: file existence can have races. Subtler are the os.path.is... functions: isdir,

isfile, islink, and more can decide if a file name points to what we expect.

The os.path.get... functions get non-boolean metadata: access time, modification

time, c-time (sometimes shortened to “creation time,” but misleadingly not the actual

time of creation in a set of subtle circumstances, and more accurately refer to as “i-node

modification time”), and getsize getting the size of the file.

The shutil module (“shell utilities”) contains some higher-level operations. shutil.

copy will copy a file’s contents as well as metadata. shutil.copyfile will copy contents only.

shutil.rmtree is the equivalent of rm -r, while shutil.copytree is the equivalent of cp -r.

Finally, temporary files are often useful. Python’s tempfile module produces

temporary files that are secure and resistant to leaks. The most useful functionality is

NamedTemporaryFile, which can be used as a context.

A typical usage looks like this:

with NamedTemporaryFile() as fp:

 fp.write("line 1\n")

 fp.write("line 2\n")

 fp.flush()

 function_taking_file_name(fp.name)

Note that the fp.flush there is important. The file object caches write until

closed. However, NamedTemporaryFile will vanish when closed. Explicitly flushing it is

important before calling a function that will reopen the file for reading.

4.2 Processes
The main module to deal with running subprocesses in Python is subprocess. It contains

a high-level abstraction that matches the intuitive model most have when they think of

“running commands,” rather than the low-level model implemented in UNIX, using exec

and fork.

Chapter 4 OS autOmatiOn

44

It is also a powerful alternative to calling the os.system function, which is

problematic in several ways. For one, os.system spawns an extra process, the shell.

This means that it depends on the shell, which on some weirder installation can differ

with a more “exotic” system shell like ash or fish. Finally, it means that the shell will

parse the string, which means the string has to be properly serialized. This is a hard task

to do, since the formal specification for the shell parser is long. Unfortunately, it is not

hard to write something that will work fine most of the time, so most bugs are subtle and

break at the worst possible time. This sometimes even manifests as a security flaw.

While subprocess is not completely flexible, for most needs, this module is perfectly

adequate.

subprocess itself is also divided into high-level functions and a lower-level

implementation level. The high-level functions, which should be used in most

circumstances, are check_call and check_output. Among other benefits, they behave

like running a shell with -e, or set err – they will immediately raise an exception if a

command returns with a non-zero value.

The slightly lower-level is Popen, which creates processes and allows fine-grained

configuration of their inputs and outputs. Both check_call and check_output are

implemented on top of Popen. Because of that, they share some semantics and

arguments. The most important argument is shell=True, and it is most important in that

it is almost always a bad idea to use it. When the argument is given, a string is expected,

and is passed to the shell to parse it.

Shell parsing rules are subtle and full of corner cases. If it is a constant command,

there is no benefit there: We can translate the command to separate arguments in

code. If it includes some input, it is almost impossible to reliably escape it in a way that

makes it impossible to introduce an injection problem. On the other hand, without this,

creating commands on the fly is reliable, even in the face of potentially hostile inputs.

The following, for example, will add a user to the docker group.

subprocess.check_call(["usermod", "-G", "docker", "some-user"])

Using check_call means that if the command fails for some reason, such as the user

not existing, this will automatically raise an exception. This avoids a common failure

mode, where scripts do not report accurate status.

If we want to make it into a function that takes a username, it is straightforward:

def add_to_docker(username):

 subprocess.check_call(["usermod", "-G", "docker", username])

Chapter 4 OS autOmatiOn

45

Note that this is safe to call even if the argument contains spaces, #, or other

characters with special meanings.

In order to tell which groups the current user is currently in, we can run groups.

groups = subprocess.check_output(["groups"]).split()

Again, this will automatically raise an exception if the command fails. If it succeeds,

we get the output as a string: no need to manually read and determine end conditions.

Both of these functions get common arguments. cwd allows running a command

inside of a given directory. This matters for commands that look in their current

directory.

sha = subprocess.check_output(

 ["git", "rev-parse", "HEAD"],

 cwd="src/some-project").decode("ascii").strip()

This will get the current git hash of the project, assuming the project is a git

directory. If it is not, git rev-parse HEAD will return non-zero and cause an exception

to be raised.

Note that we had to decode the output, since subprocess.check_output, like most

functions in subprocess, returns a byte string, not a Unicode string. In this case, rev-

parse HEAD always returns a hexadecimal string, so we used the ascii codec. This will

fail on any non-ASCII characters.

There are some circumstances under which using the high-level abstractions are

impossible. For example, having to send standard input or read output in chunks is not

possible with them.

Popen runs a subprocess and allows fine-grained control on the inputs

and outputs. While all things are, indeed, possible, most things are not easy to

do correctly. The shell pattern of writing long pipelines is both unpleasant to

implement; even more unpleasant to make sure there are no lingering deadlock

conditions; and, most of all, unnecessary.

If a short message into standard input is needed, the best way is to use the method

communicate.

proc = Popen(["docker", "login", "--password-stdin"], stdin=PIPE)

out, err = proc.communicate(my_password + "\n")

Chapter 4 OS autOmatiOn

46

If longer input is needed, having the communicate buffer it all in memory might

be problematic. While it is possible to write to the process in chunks, doing it without

potentially getting deadlocks is nontrivial. The best option is often to use a temporary file:

with tempfile.TemporaryFile() as fp:

 fp.write(contents)

 fp.write(of)

 fp.write(email)

 fp.flush()

 fp.seek(0)

 proc = Popen(["sendmail"], stdin=fp)

 result = proc.poll()

In fact, in this case, we can even use the check_call function:

with tempfile.TemporaryFile() as fp:

 fp.write(contents)

 fp.write(of)

 fp.write(email)

 fp.flush()

 fp.seek(0)

 check_call(["sendmail"], stdin=fp)

If you are used to running processes in shell, you are probably used to long pipelines:

$ ls -l | sort | head -3 | awk '{print $3}'

As noted above, it is a best practice in Python to avoid true command parallelism:

in all of the cases, we tried to finish one stage before reading from the next. In Python,

in general, using subprocess is only used for calling out to external commands. For

preprocessing of inputs, and post-processing of outputs, we usually use Python’s

built-in processing abilities: in the case above, we would use sorted slices and string

manipulation to simulate the logic.

The commands for text and number processing are seldom useful in Python, which

has a good in-memory model for doing such processing. The general case for calling

commands in scripts is for things that manipulate data in a way that is either only

documented as accessible by commands – for example, querying processes via ps -ef,

or where the alternative to the command is a subtle library, sometimes requiring binary

binding, such as in the case of docker or git.

Chapter 4 OS autOmatiOn

47

This is one place where translating shell scripts into Python must be done with care

and thought. Where the original had a long pipeline that depended on ad hoc string

manipulation via awk or sed, Python code can be less parallel and more obvious. It is

important to note that in those cases, there is something lost in translation: the original

low-memory requirements and transparent parallelism. However, in return we get more

maintainable and more debuggable code.

4.3 Networking
Python has plenty of networking support. It has it from the lowest level: support of the

socket-based system calls to high-level protocol supports. Some of the best approaches

for problems are with built-in libraries. For other problems, the best solution is a third-

party library.

The most straightforward translation of low-level networking APIs is in the socket

module. This module exposes the socket object.

The HTTP protocol is simple enough so we can implement a simple client straight

from the Python interactive command prompt.

>>> import socket, json, pprint

>>> s = socket.socket()

>>> s.connect(('httpbin.org', 80))

>>> s.send(b'GET /get HTTP/1.0\r\nHost: httpbin.org\r\n\r\n')

40

>>> res = s.recv(1024)

>>> pprint.pprint(json.loads(

... res.decode('ascii').split('\r\n\r\n', 1)[1]))

{'args': {},

 'headers': {'Connection': 'close', 'Host': 'httpbin.org'},

 'origin': '73.162.254.113',

 'url': 'http://httpbin.org/get'}

The line s = socket.socket() creates a new socket object. There are various things

that we can do with socket objects. One of them is to connect them to an endpoint: in

this case, to the server httpbin.org, port 80. The default socket type is a stream, internet

type: this is the way UNIX refers to TCP sockets.

Chapter 4 OS autOmatiOn

48

After the socket is connected, we can send bytes to it. Note – on sockets, only

byte strings can be sent. We read back the result and do some ad hoc HTTP response

parsing – and parse the actual content as JSON.

While in general, it is better to use a real HTTP client, this showcases how to write

low-level socket code. This can be useful, for example, if we want to diagnose a problem

by replaying exact messages.

The socket API is subtle, and the above example has a few incorrect assumptions

in it. In most cases, this code will work but will fail in strange ways in the face of

corner cases.

The send method is allowed to not send all the data, if not all of it can fit into the

internal kernel-level send buffer. This means that it can do a “partial send.” It returned

40, above, which was the entire length of the byte string. Correct code would have

checked for the return value and send the remaining chunks until nothing is left. Luckily,

Python already has a method to do it: sendall.

However, a more subtle problem occurs with recv. It will return as much as the

kernel-level buffer has, because it does not know how much the other side intended

to send. Again, much of the time, especially for short messages, this will work fine. For

protocols like HTTP 1.0, the correct behavior is to read until the connection is closed.

Here is a fixed version of the code:

>>> import socket, json, pprint

>>> s = socket.socket()

>>> s.connect(('httpbin.org', 80))

>>> s.sendall(b'GET /get HTTP/1.0\r\nHost: httpbin.org\r\n\r\n')

>>> resp = b''

>>> while True:

... more = s.recv(1024)

... if more == b'':

... break

... resp += more

...

>>> pprint.pprint(json.loads(resp.decode('ascii').split('\r\n\r\n')[1]))

{'args': {},

 'headers': {'Connection': 'close', 'Host': 'httpbin.org'},

 'origin': '73.162.254.113',

 'url': 'http://httpbin.org/get'}

Chapter 4 OS autOmatiOn

49

This is a common problem in networking code, and one that can happen using

higher-level abstractions as well. Things can appear to work in simple cases while failing

to work in more extreme circumstances, such as high-load or network congestion.

There are ways to test for these things. One of them is using proxies that exhibit

extreme behaviors. Writing, or customizing those, will require low-level network coding

using socket.

Python also has higher-level abstractions for networking. While the urllib and

urllib2 modules are part of the standard library, best practices on the web evolve fast,

and in general, for higher-level abstractions, third-party libraries are usually better.

One of the most popular is a third-party library, requests. With requests, getting a

simple HTTP page is much simpler.

>>> import requests, pprint

>>> res=requests.get('http://httpbin.org/get')

>>> pprint.pprint(res.json())

{'args': {},

 'headers': {'Accept': '∗/∗',
 'Accept-Encoding': 'gzip, deflate',

 'Connection': 'close',

 'Host': 'httpbin.org',

 'User-Agent': 'python-requests/2.19.1'},

 'origin': '73.162.254.113',

 'url': 'http://httpbin.org/get'}

Instead of crafting our own HTTP requests out of raw bytes, all we needed to do

was to give a URL, similar to a URL we might type into a browser. Requests parsed it to

find the host to connect to (httpbin.org) the port (80, the default for HTTP) and the

path (/get). Once the response came in, it automatically parsed it into headers and

content, and it allowed us to access the content directly as JSON.

As easy as requests is to use, however, it is almost better to put in a little bit more

effort and use the Session object. Otherwise, the default session is used. This leads to

code with nonlocal side effects: one sub-library that calls requests changes some session

state, which leads to another sub-library’s calls to act differently. For example, HTTP

cookies are shared across a session.

Chapter 4 OS autOmatiOn

50

The code above would be better written as:

>>> import requests, pprint

>>> session = requests.Session()

>>> res = session.get('http://httpbin.org/get')

>>> pprint.pprint(res.json())

{'args': {},

 'headers': {'Accept': '∗/∗',
 'Accept-Encoding': 'gzip, deflate',

 'Connection': 'close',

 'Host': 'httpbin.org',

 'User-Agent': 'python-requests/2.19.1'},

 'origin': '73.162.254.113',

 'url': 'http://httpbin.org/get'}

In this example, the request is simple and session state does not matter. However,

this is a good habit to get into: even in the interactive interpreter, to avoid using the get,

put, and other functions directly and using only the session interface.

It is natural to use an interactive environment to prototype code, which would later

make it into a production program. By keeping good habits like this, we ease the transition.

4.4 Summary
Python is a powerful tool for automating operating system operations. This comes from

a combination of having libraries that are thin wrappers around native operating system

calls and powerful third-party libraries.

This allows us to get close to the operating systems, without any intervening

abstractions, as well as to write high-level code that does not care about the details when

these do not matter.

This combination often makes Python a superior alternative for writing scripts,

instead of using the UNIX shell. It does require a different way of thinking: Python is not

as suitable for the long pipeline of text transformers approach, but in practice, those long

pipelines of text transformers turn out to be an artifact of shell limitations.

With a modern memory-managed language, it is often easier to read the entire

text stream into memory, and then manipulate it without being limited to only those

transformations that can be specified as pipes.

Chapter 4 OS autOmatiOn

51
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_5

CHAPTER 5

Testing
It is too often the case that code used for automating systems does not have the same

attention for testing as application code. DevOps teams are often small and under tight

deadlines. Such code is also hard to test, since it is meant to automate large systems, and

proper isolation for testing is nontrivial.

However, testing is one of the best ways to increase code quality. It helps make code

more maintainable in many ways. It also lowers defect rates. For code where defects can

often mean total system outage, since it often touches all the parts of the system, this is

important.

5.1 Unit Testing
Unit tests serve several distinct purposes. It is important to keep these purposes in mind,

as the resulting pressures on the unit tests are sometimes at odds.

The first purpose is as an API usage example. This is sometimes summarized with

the somewhat-inaccurate term “test driven development,” and sometimes summarized

with another other somewhat-inaccurate term, “the unit tests are the documentation.”

Test driven development means writing the unit tests before the logic, but it usually

has little effect on the final source code commit, which contains both the unit tests and

the logic, unless care is taken to preserve the original branch-wise commit history.

However, what does show up in the commit is the “unit tests as ways to exercise the

API.” It is, ideally, not the only documentation of the API. However, it does serve as a

useful reference of last resort: at the very least, we know that the unit tests are calling the

API correctly and get back the results they expect.

Another reason is to gain confidence that the logic expressed in the code does the

right thing. Again, this is often referred to with the misnomer “regression tests,” after the

most common such test: a test to make sure that a bug, detected by someone, is truly

fixed. However, since the developer of the code is aware of the potential edge cases and

52

trickier flows, they are often in a position to add that test before such a bug makes it out

into the externally-observed code change: however, such a confidence-increasing test

looks exactly like a “regression test.”

A final reason is to avoid incorrect future changes. This is different from the

“regression test,” above, in that often the case being tested is straightforward for the

code as is, and the flows involved are already covered by other tests. However, it seems

like some potential optimizations or other natural changes might break this case, so

including it helps a future maintenance programmer.

When writing a test, it is important to think about which of those goals it is meant to

accomplish.

A good test will accomplish more than one. All tests have two potential impacts:

• Make the code better by helping future maintenance work.

• Make the code worse by making future maintenance work harder.

Every test will do some of both. A good test does more of the first, and a bad test

does more of the second. One way to reduce the bad impact is to consider the question:

“Is this test testing something that the code promises to do?” If the answer is “no,” this

means it is valid to change the code in some way that will break the test, but will not

cause any bugs. This means the test has to be changed or discarded.

When writing tests, as much as possible, it is important to test the actual contract of

the code.

Here is an example:

def write_numbers(fout):

 fout.write("1\n")

 fout.write("2\n")

 fout.write("3\n")

This function writes a few numbers into a file.

A bad test might look like this:

class DummyFile:

 def __init__(self):

 self.written = []

 def write(self, thing):

 self.written.append(thing)

Chapter 5 testing

53

def test_write_numbers():

 fout = DummyFile()

 write_numbers(fout)

 assert_that(fout.written, is_(["1\n", "2\n", "3\n"]))

The reason this is a bad test is because it checks for a promise that write_numbers

never made: that each write only writes one line.

A future refactor might look like this:

def write_numbers(fout):

 fout.write("1\n2\n3\n")

This would keep the code correct – all users of write_numbers would still have

correct files – but would cause a change in the test.

A slightly more sophisticated approach would be to concatenate the strings written.

class DummyFile:

 def __init__(self):

 self.written = []

 def write(self, thing):

 self.written.append(thing)

def test_write_numbers():

 fout = DummyFile()

 write_numbers(fout)

 assert_that("".join(fout.written), is_("1\n2\n3\n"))

Note that this test would work both before and after the hypothetical “optimization”

that we suggested above. However, this still tests more than the implied contract of

write_numbers. After all, the function is supposed to operate on files: it might use

another method to write.

The test above would break if we modified write_numbers to:

def write_numbers(fout):

 fout.writelines(["1\n",

 "2\n",

 "3\n"]

Chapter 5 testing

54

A good test is one that would only break if there was a bug in the code. However,

this code still works for the users of write_numbers, meaning that the maintenance now

involved unbreaking a test, pure overhead.

Since the contract is to be able to write to file objects, it is best to supply a file object.

In this case, Python has one ready-made:

def test_write_numbers():

 fout = io.StringIO()

 write_numbers(fout)

 assert_that(fout.getvalue(), is_("1\n2\n3\n"))

In some cases, this will require writing a custom fake. We will cover the concept of

fakes, and how to write them, later.

We talked about the implicit contract of write_numbers. Since it had no

documentation, we could not know what the original programmer’s intent was. This is,

unfortunately, common – especially in internal code, only used by other pieces of the

project. Of course, it is better to clearly document programmer intent. In the face of lack

of clear documentation, however, it is important to make reasonable assumptions on the

implicit contract.

Above, we used the functions assert_that and is_ to verify that the values were

what we expected. Those functions come from the hamcrest library. This library, ported

from Java, allows specifying properties of structures and checks that they are satisfied.

When using the pytest test runner to run unit tests, it is possible to use regular

Python operators with the assert keyword and get useful test failures. However, this

binds the tests to a specific runner, as well as having a specific set of assertions that get

treated especially for useful error messages.

Hamcrest is an open-ended library: while it has built-in assertions for the usual

things (equality, comparisons, sequence operations, and more), it also allows defining

specific assertions. Those come in handy when handing complicated data structures,

such as those returned from APIs, or when only specific assertions can be guaranteed by

the contract (for example, the first three characters can be arbitrary but must be repeated

somewhere inside of the rest of the string).

This allows to test the exact contract of the function. In particular, this is another

tool in avoiding testing “too much”: testing implementation details that can change,

requiring changing the test when no real users have been broken. This is crucial for

three reasons.

Chapter 5 testing

55

One is straightforward: time spent updating tests that could have been avoided

is time wasted. DevOps teams are usually small, and there is little room to waste

resources.

The second is that getting used to changing tests when they fail is a bad habit. It

means when behavior has changed as a result of a bug, people will assume that the right

thing to do is to update the test.

Finally, and most importantly, the combination of those two will lower the return

on investment on unit testing, and even worse, the perceived return on investment.

As a result, there will be organizational pressure to spend less time writing tests.

Bad tests that test implementation details are the single biggest cause for the meme

that “it is not worth it to write unit tests for DevOps code.”

As an example, let’s assume we have a function where all we can assert confidently is

that the result has to be divisible by one of the arguments.

class DivisibleBy(hamcrest.core.base_matcher.BaseMatcher):

 def __init__(self, factor):

 self.factor = factor

 def _matches(self, item):

 return (item % self.factor) == 0

 def describe_to(self, description):

 description.append_text('number divisible by')

 description.append_text(repr(self.factor))

def divisible_by(num):

 return DivisibleBy(num)

By convention, we wrap constructors in a function. This is usually useful if we want

to convert the argument to a matcher, which in this case would not make sense.

def test_scale():

 result = scale_one(3, 7)

 assert_that(result,

 any_of(divisible_by(3),

 divisible_by(7)))

Chapter 5 testing

56

We would get an error like the following:

Expected: (number divisible by 3 or number divisible by 7)

 but: was <17>

It lets us test exactly what the contract of scale_one promises: in this case, that it

would scale up one of the arguments by an integer factor.

The emphasis on the importance of testing precise contracts is not accidental. This

emphasis, which is a skill that is possible to learn and has principles that are possible to

teach, makes unit tests into something that accelerate the process of writing code rather

than make it slower.

Much of the reason people have aversion to unit tests as “something that wastes

time for DevOps engineers” and leads to a lot of poorly tested code that is foundational

for business processes such as deployment of software is this misconception. Properly

applying principles of high-quality unit testing leads to a more reliable foundation for

operational code.

5.2 Mocks, Stubs, and Fakes
Typical DevOps code has outsized effects on the operating environment. Indeed, this is

almost the definition of good DevOps code: it replaces a significant amount of manual

work. This means that testing DevOps code needs to be done carefully: we cannot simply

spin up a few hundred virtual machines for each test run.

Automating operations means writing code that, run haphazardly, can have

significant impact on production systems. When testing the code, it is worthwhile to

have as few of these side effects as possible. Even if we have high-quality staging systems,

sacrificing one every time there is a bug in operational code would lead to a lot of wasted

time. It is important to remember that unit tests run on the worst code produced: the act

of running them, and fixing bugs, means even code committed into feature branches is

likelier to be in better condition.

Because of that, we often try to run unit tests against a “fake” system. Classifying what

we mean by “fake,” and how it impacts both unit tests and code design, is important: it is

worthwhile thinking about how to test the code well before starting to write it.

The neutral term for things that substitute for the systems not under test is “test

doubles.” Fakes, mocks, and stubs usually have more precise meaning, though in casual

conversation they will be used interchangeably.

Chapter 5 testing

57

The most “authentic” test double is a “verified fake.” A verified fake fully implements

the interface of the system not under test, though often simplified: perhaps less

efficiently implemented, often without touching any external operating system. The

“verified” refers to the fact that the fake has its own tests, verifying that it does indeed

implement the interface.

An example of a verified fake is using a memory-only SQLite database instead of a

file-based one in tests. Since SQLite has its own tests, this is a verified fake: we can be

confident it behaves like a real SQLite database.

Below the verified fake is the fake. The fake implements an interface but often does it

in such a rudimentary form that the implementation is simple, and not worth the effort

to test.

For example, it is possible to create an object with the same interface as subprocess.

Popen but that never actually runs the process: instead, it simulates a process that

consumes all standard input, and outputs some predetermined content into standard

output and exits with a predetermined code.

This object, if simple enough, might be a stub. A stub is a simple object that answers

with predetermined data, always the same, holding almost no logic. This makes it easier

to write, but it does make it constrained in what tests it can do.

An inspector, or a spy, is an object that attaches to a test double and monitors the

calls. Often, part of the contract of a function is that it will call some method with specific

values. An inspector records the calls and can be used in assertions to make sure the

right calls got the right arguments.

If we combine an inspect or with a stub or a fake, we get a mock. Since this means that

the stub/fake will have more functionality than the original (at least, whatever is needed

to check the recording), this can lead to some side effects. However, the simplicity and

immediacy of creating mocks often compensates by making testing code simpler.

5.3 Testing Files
The filesystem is, in many ways, the most important thing about a UNIX system. While

the slogan “everything is a file” falls short of describing modern systems, the filesystem is

still at the heart of most operations.

The filesystem has several properties that are worthwhile to consider when thinking

about testing file-manipulation code.

Chapter 5 testing

58

First, filesystems tend to be robust. While bugs in filesystems are not unknown, they

are rare, far between, and usually only triggered by extreme conditions or an unlikely

combination of conditions.

Next, filesystems tend to be fast. Consider the fact that unpacking a source tarball,

a routine operation, will create many small files (on the order of several kilobytes) in

quick succession. This is a combination of fast system-call mechanisms combined with

sophisticated cache semantics when reading or writing files.

Filesystems also have a curious fractal property: with the exception of some esoteric

operations, a sub-sub-sub-directory supports the same semantics as the root directory.

Finally, filesystems have a very thick interface. Some of it will be built into Python,

even – consider that the module system reads files directly. There are also third-party

C libraries that will use their own internal wrappers to access the filesystem as well as

several ways to open files even in Python: the built-in file object as well as the os.open

low-level operations.

This combines to the following conclusion: for most file-manipulation code, faking

out or mocking the filesystem is a low return on investment. The investment, in order

to make sure we are only testing the contract of a function, is considerable; since the

function could, conceivably, switch to low-level file-manipulation operations, we would

need to reimplement a significant portion of Unix file semantics. The return is low; using

the filesystem directly is fast, reliable, and, as long as the code merely allows us to pass

an alternative “root path,” almost side-effect free.

The best way to design file-manipulation code is to allow passing in such a “root

path” argument, even if the default is /. Given such design, the best way to test is to

create a temporary directory, populate it appropriately, call the code, and then garbage

collect the directory.

If we create the temporary directory using Python’s built-in tempfile module,

then we can configure the Tox runner to put the temporary file inside of Tox’s built-in

temporary directory, thus keeping the general file system clean and, usually, being

compatible with whatever version control ignore file already ignores Tox artifacts.

setenv =

 TMPDIR = {envtmpdir}

commands =

 python -m 'import os;os.makedirs(sys.argv[1])' {envtmpdir}

 # rest of test commands

Chapter 5 testing

59

Creating the temporary directory is important, since Python’s tempfile will only use

the environment variable if pointing to a real directory.

As an example, we will write tests for a function that looks for .js files and renames

them to .py.

def javascript_to_python_1(dirname):

 for fname in os.listdir(dirname):

 if fname.endswith('.js'):

 os.rename(fname, fname[:3] + '.py')

This function uses the os.listdir call to find the file names and then renames them

with os.rename.

def javascript_to_python_2(dirname):

 for fname in glob.glob(os.path.join(dirname, "∗.js")):
 os.rename(fname, fname[:3] + '.py')

This function uses the glob.glob function to filter by wildcard all the files that match

the *.js pattern.

def javascript_to_python_3(dirname):

 for path in pathlib.Path(dirname).iterdir():

 if path.suffix == '.js':

 path.rename(path.parent.joinpath(path.stem + '.py'))

The function uses the built-in module pathlib (new in Python 3) to iterate on the

directory and find its children.

The real function under test is not sure which implementation to use:

def javascript_to_python(dirname):

 return random.choice([javascript_to_python_1,

 javascript_to_python_2,

 javascript_to_python_3])(dirname)

Since we cannot be sure which implementation the function will use, we are left with

only one choice: test the actual contract.

In order to write a test, we will define some helper code. This code, in a real project,

will live in a dedicated module, possibly named something like helpers_for_tests. This

module would be tested, with its own unit tests.

Chapter 5 testing

60

We first create a context manager for our temporary directory. This will ensure, as

much as ensuring is possible, that the temporary directory will be cleaned up.

@contextlib.contextmanager

def get_temp_dir():

 temp_dir = tempfile.mkdtemp()

 try:

 yield temp_dir

 finally:

 shutil.rmtree(temp_dir)

Since this test needs to create a lot of files, and we do not care about their contents

too much, we define a helper method for that.

def touch(fname, content=''):

 with open(fname, 'a') as fpin:

 fpin.write(content)

Now with the help of these functions, we can finally write a test:

def test_javascript_to_python_simple():

 with get_temp_dir() as temp_dir:

 touch(os.path.join(temp_dir, 'foo.js'))

 touch(os.path.join(temp_dir, 'bar.py'))

 touch(os.path.join(temp_dir, 'baz.txt'))

 javascript_to_python(temp_dir)

 assert_that(set(os.listdir(temp_dir)),

 is_({'foo.py', 'bar.py', 'baz.txt'}))

For a real project, we would write more tests, many of them possibly using our get_

temp_dir and touch helpers above.

If we have a function that is supposed to check a specific path, we can have it take an

argument to “relativize” its paths.

For example, let us say we want a function to analyze our Debian installation paths

and give us a list of all domains that we download packages from.

def _analyze_debian_paths_from_file(fpin):

 for line in fpin:

 line = line.strip()

Chapter 5 testing

61

 if not line:

 continue

 line = line.split('#', 1)[0]

 parts = line.split()

 if parts[0] != 'deb':

 continue

 if parts[1][0] == '[':

 del parts[1]

 parsed = hyperlink.URL.from_text(parts[1].decode('ascii'))

 yield parsed.host

A naive approach would be to test _analyze_debian_paths_from_file. However,

it is an internal function and has no contract. The implementation can change, perhaps

reading the files and then scanning all strings, or possibly breaking up this function and

letting the top-level handle the line loop.

Instead, we want to test the public API:

def analyze_debian_paths():

 for fname in os.listdir('/etc/apt/sources.list.d'):

 with open(os.path.join('/etc/apt/sources.list.d', fname)) as fpin:

 yield from _analyze_debian_paths_from_file(fpin)

However, we cannot control the directory /etc/apt/sources.list.d without

root privileges, and even with root privileges, this would be a risk: letting each test run

control such a sensitive directory. Additionally, many Continuous Integration systems

are not designed for running tests with root privileges, for good reasons, making this a

problematic approach.

Instead, we can generalize the function a little bit. This means intentionally

expanding the official, public API of the function to allow testing. This is definitely a

trade-off.

However, the expansion is minimal: all we need is an explicit directory in which to

work. In return, we get to simplify our testing requirements while avoiding any kind of

“patching,” which inevitably starts poking at private implementation details.

def analyze_debian_paths(relative_to='/'):

 sources_dir = os.path.join(relative_to, 'etc/apt/sources.list.d')

 for fname in os.listdir(sources_dir):

Chapter 5 testing

62

 with open(os.path.join(sources_dir, fname)) as fpin:

 yield from _analyze_debian_paths_from_file(fpin)

Now, using the same helpers as before, we can write a simple test for this:

def test_analyze_debian_paths():

 with get_temp_dir() as root:

 touch(os.path.join(root, 'foo.list'),

 content='deb http://foo.example.com\n')

 ret = list(analyze_debian_paths(relative_to=root))

 assert(ret, equals_to(['foo.example.com']))

Again, in a real project, we would write more than one test and try to make sure

many more cases are covered. Those could be built using the same techniques.

It is a good habit to add a relative_to parameter to any function that accesses

specific paths.

5.4 Testing Processes
Testing process-manipulation code is often a subtle endeavor, full of trade-offs.

In theory, process running code has a thick interface with the operating system; we

covered the subprocess module, but it is possible to use the os.spawn* functions

directly, or even use code os.fork and os.exec* functions. Likewise, the standard

output/input communication mechanism can be implemented in many ways,

including using the Popen abstraction or directly manipulating file descriptors with

os.pipe and os.dup.

Process-manipulation code can also be some of the most fragile. Running external

commands depends on the behavior of those commands, as a starting point. The inter-

process communication means that the flow is inherently concurrent. It is too easy to

make the mistake of making the tests rely on ordering assumptions that are not always

true. Those mistakes can lead to “flaky” tests: ones that pass most of the time, but fail

under seemingly random circumstances.

Those ordering assumptions can sometimes be true more often on development

machines, or unloaded machines, which means bugs will only be exposed in production,

or possibly in production only in extreme circumstances.

Chapter 5 testing

63

This is one of the reasons the chapter about using processes concentrated on ways

to reduce concurrency and have things more sequential. For this reason, too, it is

worthwhile, carefully designing process code to be reliably testable. That design, in itself,

will often cause pressure on the code to be simple and reliable.

If the code just uses subprocess.check_call and subprocess.check_output,

without taking advantage of exotic parameters, we can often use a simplified form of

a pattern called “dependency injection” to make it testable. In this case, “dependency

injection” is just a fancy way of saying “passing parameters to a function.”

Consider the following function:

def error_lines(container_name):

 logs = subprocess.check_output(["docker", "logs", container_name])

 for line in logs:

 if 'error' in line:

 return line

This function is unpleasant to test. We can use advanced patching to replace

subprocess.check_output, but this would be error prone and rely on implementation

details. Instead, we can explicitly elevate that implementation detail into being a part of

the contract:

def error_lines(container_name, runner=subprocess.check_output):

 logs = runner(["docker", "logs", container_name])

 for line in logs:

 if 'error' in line:

 yield line.strip()

Now that runner is part of the official interface, testing becomes much easier. This might

seem a trivial change, but it is deeper than it looks; in some sense, error_lines has now

voluntarily constrained its interface to process running.

We might want to test it with something like the following:

def test_error_lines():

 container_name = 'foo'

 def runner(args):

 if args[0] != 'docker':

 raise ValueError("Can only run docker", args)

Chapter 5 testing

64

 if args[1] != 'logs':

 raise ValueError("Can only run docker logs", args)

 if args[2] != container_name:

 raise ValueError("No such container", args[2])

 return iter(["hello\n", "error: 5 is not 6\n", "goodbye\n"])

 ret = error_lines(container_name, runner=runner)

 assert_that(list(ret), is_(["error: 5 is not 6"))

Note that, in this case, we did not restrict ourselves to only checking the contract:

error_lines could have run, for example, docker logs -- <container_name>.

However, one advantage of our method is that we can slowly improve our fidelity and

only improve the test.

For example, we can add to runner:

def runner(args):

 if args[0] != 'docker':

 raise ValueError("Can only run docker", args)

 if args[1] != 'logs':

 raise ValueError("Can only run docker logs", args)

 if args[2] == '--':

 arg_container_name = args[3]

 else:

 arg_container_name = args[2]

 if args_container_name != container_name:

 raise ValueError("No such container", args[2])

 return iter(["hello\n", "error: 5 is not 6\n", "goodbye\n"])

This will still work with the old version of the code and will also work with

post- modification code. Fully emulating the docker is not realistic or worthwhile.

However, this approach would slowly improve the accuracy of the test, with no

downsides.

If a significant amount of our code interfaces, for example, with docker, we can

eventually factor out a mini-docker-emulator like that into its own test helper library.

Using higher-level abstractions for process running helps with this sort of approach.

The seashore library, for example, separates the part that calculates the commands from

the low-level runner, which allows substituting only the low-level one.

Chapter 5 testing

65

def error_lines(container_name, executor):

 logs, _ignored = executor.docker.logs(container_name).batch()

 for line in logs.splitlines():

 if 'error' in line:

 yield line.strip()

When run in production, somewhere at the top, an executor object will be created

with code that looks like this:

executor = seashore.Executor(seashore.Shell())

That object will be passed down to whatever is calling error_lines and used there.

In general, when using seashore, we leave the creation of the executor to the top-level

functionality.

In the test, we create our own shell:

@attr.s

class DummyShell:

 _container_name = attr.ib()

 def batch(self, ∗args, ∗∗kwargs):
 if (args == ['docker', 'logs', self._container_name] and

 kwargs == {}):

 return "hello\nerror: 5 is not 6\ngoodbye\n", ""

 raise ValueError("unknown command", self, args, kwargs)

def test_error_lines():

 container_name = 'foo'

 executor = seashore.Executor(DummyShell(container_name))

 ret = error_lines(container_name, executor)

 assert_that(list(ret), is_(["error: 5 is not 6"]))

Using the attrs library, especially when writing various fakes, is often a good idea.

Fakes tend to be, intentionally, simple objects. Since they will be involved in assertions

and exceptions, it is useful to have high-quality representations of them. This is exactly

the kind of boilerplate that attrs helps reduce.

Again, we might need to slowly upgrade our fidelity.

Chapter 5 testing

66

Because processes are so hard to test, it is good to use process running only when

necessary. Especially when porting over shell scripts to Python – often a good idea when

they grow in complexity – it is good to substitute long pipelines with in-memory data

processing.

Especially if we factor the code the right way, with the data processing as a simple

pure function that takes an argument and returns a value, the bulk of the code becomes

a pleasure to test.

Imagine, for example, the pipeline,

ps aux | grep conky | grep -v grep | awk '{print $2}' | xargs kill

This will kill all processes that have conky in their names.

Here is a way to refactor the code to make it easier to test:

def get_pids(lines):

 for line in lines:

 if 'conky' not in line:

 continue

 parts = line.split()

 pid_part = parts[1]

 pid = int(pid_part)

 yield pid

def ps_aux(runner=subprocess.check_output):

 return runner(["ps", "aux"])

def kill(pids, killer=os.kill):

 for pid in pids:

 killer(pid, signal.SIGTERM)

def main():

 kill(get_pid(ps_aux()))

Note how the most complicated code is now in a pure function: get_pids. Hopefully,

this means most bugs will be there, and we can unit test against them.

The code that is harder to unit test, get_pids, where we have to do ad hoc

dependency injection, is now in simple functions that have fewer failure modes.

The main logic is in functions that do data processing. Testing those just requires

supplying simple data structure and observing the return value. Moving potential bugs

Chapter 5 testing

67

from the system-related code, which requires more effort to unit test, to the pure logic,

which is easier to unit test, means reducing the bugs; more bugs will be caught with

unit tests.

5.5 Testing Networking
In the requests library documentation, using the Session object falls under the

“advanced” section. This is unfortunate. For anything other than throwaway scripts, or

interactive REPL usage, using the Session object is the best option. Testing is by far the

least of the reasons – but once Session is used, testing becomes a lot easier.

Simple example code using requests might look like this:

def get_files(gist_id):

 gist = requests.get(f"https://api.github.com/gists/{gist_id}").json()

 result = {}

 for name, details in gist["files"].items():

 result[name] = requests.get(details["raw_url"]).content

 return result

This would be hard to test in isolation. Instead, we rewrite it to take an explicit

session object:

def get_files(gist_id, session=None):

 if session is None:

 session = requests.Session()

 gist = session.get(f"https://api.github.com/gists/{gist_id}").json()

 result = {}

 for name, details in gist["files"].items():

 result[name] = session.get(details["raw_url"]).content

 return result

The code is almost identical. However, now testing becomes a simple matter of

writing an object with a get method.

@attr.s(frozen=True)

class Gist:

 files = attr.ib()

Chapter 5 testing

68

@attr.s(frozen=True):

class Response:

 content = attr.ib()

 def json(self):

 return json.loads(content)

@attr.s(frozen=True)

class FakeSession:

 _gists = attr.ib()

 def get(self, url):

 parsed = hyperlink.URL.from_text(url)

 if parsed.host == 'api.github.com':

 tail = path.rsplit('/', 1)[-1]

 gist = self._gists[tail]

 res = dict(files={name: f'http://example.com/{tail}/{name}'

 for name in gist.files})

 return Repsonse(json.dumps(res))

 if parsed.host == 'example.com':

 _ignored, gist, name = path.split('/')

 return Response(self.gists[gist][name])

This is a bit long-winded. We can sometimes, if this functionality is localized and

writing a whole helper library is not worth it, use the unittest.mock library.

def make_mock():

 gist_name = 'some_name'

 files = {'some_file': 'some_content'}

 session = mock.Mock()

 session.get.content.return_value = 'some_content'

 session.get.json.return_value = json.dumps({'files': 'some_file'})

 return session

This is a “quick and dirty” hack, counting on the fact (that is not in the contract) that

the file content is retrieved using content, and the gist’s logical structure is retrieved

using json. However, it is often better to write a quick test using mocks that depend a

little on the implementation details rather than not writing a test at all.

Chapter 5 testing

69

It is important to think of tests like this as “technical debt” and improve them at

some point to depend more on the contract and less on the implementation details. A

good way to do it is to put a comment in the code, and link it to an issue tracker. This also

makes it obvious to test code readers that this is still a work in progress.

The other important thing is that, if a new implementation breaks the test, the right

way to fix it is, in general, not to write another test against the new implementation. The

right way to fix it is to move more of the test to contract-based testing. This can be done

by first improving the test, but making sure it runs against the old code. Then comes

refactoring the code and seeing the test still passing.

When writing network code that deals with lower-level concepts, such as sockets,

similar ideas still apply. Since the creation of the socket object is separate from any usage

of it, a lot of mileage can be gotten out of writing functions that accept socket objects,

and creating them outside.

In order to simulate extreme conditions and see if our code can work in spite of

them, we might want to use something like the following as a socket fake:

@attr.s

class FakeSimpleSocket:

 _chunk_size = attr.ib()

 _received = attr.ib(init=False, factory=list)

 _to_send = attr.ib()

 def connect(self, addr):

 pass

 def send(self, blob):

 actually_sent = blob[:chunk_size]

 self._received.append(actually_sent)

 return len(actually_sent)

 def recv(self, max_size):

 chunk_size = min(max_size, self._chunk_size)

 received, self._to_send = (self._to_send[:chunk_size],

 self._to_send[chunk_size:])

 return received

Chapter 5 testing

70

This allows us to control the size of “chunks.” An extreme test would be to use a

chunk_size of 1. This means bytes would go out one at a time, and they would be

received one at a time. No real network would be this bad, but a unit test allows us to

simulate more extreme conditions than any reasonable network.

This fake is useful to test networking code. For example, this code does some ad hoc

HTTP to get a result:

def get_get(sock):

 sock.connect(('httpbin.org', 80))

 sock.send(b'GET /get HTTP/1.0\r\nHost: httpbin.org\r\n\r\n')

 res = sock.recv(1024)

 return json.loads(res.decode('ascii').split('\r\n\r\n', 1)[1]))

It has a subtle bug in it. We can uncover the bug with a simple unit test, using the

socket fake.

def test_get_get():

 result = dict(url='http://httpbin.org/get')

 headers = 'HTTP/1.0 200 OK\r\nContent-Type: application/json\r\n\r\n'

 output = headers + json.dumps(result)

 fake_sock = FakeSimpleSocket(to_send=output, chunk_size=1)

 value = get_get(fake_sock)

 assert_that(value, is_(result))

This test would fail: our get_get assumes a good quality network connection, and

this simulates a bad one. It would succeed if we changed chunk_size to 1024.

We could run the test in a loop, testing chunk sizes from 1 to 1024. In a real test we

would also check the sent data, and possibly also send invalid results to see the response.

The important thing, however, is that none of those things need setting up clients or

servers, or trying to realistically simulate bad networks.

5.6 Summary
Teams rely on DevOps code to keep systems functional and observable. The correctness

of DevOps code is critical. Writing proper tests will help improve code correctness.

Taking proper test-writing principles into account will help reduce the burden of

modifying tests when making correct changes to the code.

Chapter 5 testing

71
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_6

CHAPTER 6

Text Manipulation
Automation of UNIX-based systems often involves text manipulation. Many programs

are configured with textual configuration files. Text is the output format, and the input

format, of many systems. While tools like sed, grep, and awk have their place, Python is a

powerful tool for sophisticated text manipulation.

6.1 Bytes, Strings, and Unicode
When manipulating text or text-like streams, it is easy to write code that fails in funny

ways when encountering a foreign name, or emoji. These are no longer mere theoretical

concerns: you will have users from the entire world, who insist on their usernames

reflecting how they spell their names. You will have people who write git commits with

emojis in them. In order to make sure to write robust code, which does not fail in ways

that, to be fair, seem a lot less funny when they case a 3 a.m. page, it is important to

understand that “text” is a subtle thing.

You can understand the distinction, or you can wake up at 3 a.m. when someone

tries to log in with an emoji username.

Python 3 has two distinct types that both represent the kind of things that are often

in UNIX “text” files: bytes and strings. Bytes correspond to what RFCs usually refer to

as an “octet-stream.” This is a sequence of values that fit into 8 bits, or in other words,

a sequence of numbers that are in the range 0 to 256 (including 0 and not including

256). When all of these values are below 128, we call the sequence “ASCII” (American

Standard Code of Information Interchange) and assign to the numbers the meaning

ASCII has assigned them. When all of these values are between 32 and 128 (including 32

and not including 128), we call the sequence “printable ASCII,” or “ASCII text.” The first

32 characters are sometimes called “Control characters.” The “Ctrl” key on keyboards is a

reference to that – its original purpose was to be able to input those characters.

72

ASCII only encompasses the English alphabet, used in “America.” In order to

represent text in (almost) any language, we have Unicode. Unicode code points are

(some of the) numbers between 0 and 2∗∗32 (including 0 and not including 2∗∗32).

Each Unicode code point is assigned a meaning. Successive versions of the standards

leave assigned meanings as is, but add meanings to more numbers. An example is the

addition of more emojis. The International Standards Organization, ISO, ratifies

versions of Unicode in its 10464 standards. For this reason, Unicode is sometimes called

ISO-10464.

Unicode points that are also ASCII have the same meaning – if ASCII assigns a

number “uppercase A,” then so does Unicode.

Properly speaking, only Unicode is “text.” This is what Python strings represent.

Converting bytes to strings, or vice versa, is done with an encoding. The most popular

encoding these days is UTF-8. Confusingly, turning the bytes to text is “decoding.”

Turning the text to bytes is “encoding.”

Remembering the difference between encoding and decoding is crucial in order

to manipulate textual data. A way to remember it is that since UTF-8 is an encoding,

moving from strings to UTF-8 encoded data is “encoding,” while moving from UTF-8

encoded data to strings is “decoding.”

UTF-8 has an interesting property: when given a Unicode string that happens to be

ASCII, it will produce bytes with the values of the code points. This means that “visually,”

the encoded and decoded form will look the same.

>>> "hello".encode("utf-8")

b'hello'

>>> "hello".encode("utf-16")

b'\xff\xfeh\x00e\x00l\x00l\x00o\x00'

We show the example with UTF-16 to show that this is not a trivial property of

encodings. Another property of UTF-8 is that if the bytes are not ASCII, and UTF-8

decoding of the bytes succeeds, then it is unlikely that they were encoded with a different

encoding. This is because UTF-8 was designed to be self-synchronizing: starting at a

random byte, it is possible to synchronize with the string with a limited number of bytes

being checked. Self-synchronization was designed to allow recovery from truncation and

corruption, but as a side benefit, it allows detecting invalid characters reliably, and thus

detect if the string was UTF-8 to begin with.

Chapter 6 text Manipulation

73

This means “try decoding with UTF-8” is a safe operation; it will do the right thing for

ASCII-only texts, and it will, of course, work for UTF-8 encoded texts and will fail cleanly

for things that are neither ASCII nor UTF-8 encoded – either text in a different encoding

or a binary format such as JPEG.

For Python, fails cleanly means “throws an exception.”

>>> snowman = '\N{snowman}'

>>> snowman.encode('utf-16').decode('utf-8')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0:

invalid start byte

For random data, this will also tend to fail:

>>> struct.pack('B'∗12,
 ∗(random.randrange(0, 256)
 for i in range(12))

).decode('utf-8')

The errors are random, since the inputs are random. Some example errors might be:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe2 in position 4:

invalid continuation byte

UnicodeDecodeError: 'utf-8' codec can't decode byte 0x98 in position 2:

invalid start byte

It is a good exercise to try and run this a few times; it will almost never succeed.

6.2 Strings
The Python string object is subtle. From one perspective it appears to be a sequence of

characters: and a character is a string of length 1.

>>> a="hello"

>>> for i, x in enumerate(a):

... print(i, x, len(x))

...

Chapter 6 text Manipulation

74

0 h 1

1 e 1

2 l 1

3 l 1

4 o 1

The string “hello” has five elements, each of which is a string of length 1. Since the

string is a sequence, the usual sequence operations work on it.

We can create a slice by specifying both endpoints:

>>> a[2:4]

'll'

or just the end:

>>> a[:2]

'he'

or just the beginning:

>>> a[3:]

'lo'

We can also use negative indices to count from the end:

>>> a[:-3]

'he'

And of course, we can reverse a string by specifying an extended slice with a negative

step:

>>> a[::-1]

'olleh'

However, strings also have quite a few methods that are not part of the general

sequence interface and are useful when analyzing text.

The startswith and endswith methods are useful, since text analysis is often around

the ends.

>>> "hello world".endswith("world")

True

Chapter 6 text Manipulation

75

A little-known feature is that endswith allows a tuple of strings and will check if it

ends with any of these strings:

>>> "hello world".endswith(("universe", "world"))

True

An example where it comes in useful is testing for a few common endings:

>>> filename.endswith((".tgz", ".tar.gz"))

We can easily test here whether a file has either of the common suffixes for a gzipped

tarball: either the tgz or tar.gz suffix.

The strip and split methods are useful for parsing the kind of ad hoc formats that

many UNIX files or utilities come in. For example, the file /etc/fstab contains static

mounts.

with open("/etc/fstab") as fpin:

 for line in fpin:

 line = line.rstrip('\n')

 line = line.split('#', 1)[0]

 if not line:

 continue

 device, path, fstype, options, freq, passno = line.split()

 print(f"Mounting {device} on {path}")

This parses the file and prints a summary. The first line in the loop strips out the

newline. The rstrip method strips from the right (the end) of the string.

Note that rstrip, as well as strip, accept a sequence of characters to remove.

This means that passing a string to rstrip means “any of the characters in the string”

and not “remove occurrences of this string.” This does not affect one-character arguments

to rstrip, but it does mean that longer strings are almost always a mistaken use.

We then remove comments, if any. We skip empty lines. Any line that is not

empty, we use the split with no argument, to split on any sequence of whitespaces.

Conveniently, this convention is common to several formats, and the correct handling is

built into the specification of split.

Lastly, we use a format string to format the output for easy consumption.

This is a typical usage of string parsing, and it is the kind of code that replaces long

pipelines in shell.

Chapter 6 text Manipulation

76

Finally, the join method on a string uses it as a “glue” and glues together an iterable

of strings.

The simple example of ' '.join(["hello", "world"]) will return "hello world,"

but this is only scratching the surface of join. Since it accepts an iterable, we have the

ability to pass it anything that supports iteration.

>>> names=dict(hello=1,world=2)

>>> ' '.join(names)

'hello world'

Since iterating on a dictionary objects yields the list of keys, passing it to join means

that we get a string with the list of keys, joined together.

We can also pass in a generator:

>>> '-∗-'.join(str(x) for x in range(3))
'0-∗-1-∗-2'

This allows calculating sequences on the fly and joining them, without the need to

have intermediate storage for the sequence.

The usual question about join is why it is a method on the “glue” string rather than

a method on sequences. The reason is exactly this: we can pass in any iterable, and the

glue string will glue in the bits in it.

Note that join does nothing to single-element iterables:

>>> '-∗-'.join(str(x) for x in range(0))
'0'

6.3 Regular Expressions
Regular expressions are a special DSL for specifying properties of strings, also called

“patterns.” They are common in many utilities, although each implementation will

have its own idiosyncrasies. In Python, regular expressions are implemented by the

re module. It fundamentally allows two modes of interaction – one where regular

expressions are auto-parsed at the time of text analysis, and one where they are parsed in

advance.

Chapter 6 text Manipulation

77

In general, the latter style is preferred. Auto-parsing the regular expression is suited

only to an interactive loop, where they will be used quickly and forgotten. For this

reason, we will not really cover this usage here.

In order to compile a regular expression, we use re.compile. This function returns a

regular expression object that will look for strings that match the expression. The object

can be used to do several things: for example, find one match, find all matches, or even

replace the matches.

The regular expression mini-language has a lot of subtlety. Here, we will cover only

the basics that we need to illustrate how to use regular expressions effectively.

Most characters stand in for themselves. The regular expression hello, for example,

matches exactly hello. The . stands in for any character. So hell. would match hello

and hella, but not hell – since the latter does not have any character corresponding

to the .. Square brackets delimit “character classes”: for example, wom[ae]n matches

both women and woman. Character classes can also have ranges in them – [0-9] matches

any digit, [a-z] matches any lowercase character, and [0-9a-fA-F] matches any

hexadecimal digit (hexadecimal digits and numbers pop up a lot in many places, since

two hexadecimal digits correspond exactly to a standard byte).

We also have the “repeat modifiers” that modify the expression that precedes them.

For example, ba?b matches both bb and bab – the ? stands for “zero or one.” The ∗ stands

for any number: so ba∗b stands for bb, bab, baab, baaab, and so on. If we want “at least

one,” ba+b will match almost everything that ba∗b matches, except for bb. Finally, we

have the exact counters: ba{3}b matches baaab while ba{1,2}b matches bab and baab

and nothing else.

In order to make a special character (like . or ∗) match itself, we prefix it with a

backslash. Since in Python strings, backslash has other meanings, Python supports

“raw” strings. While we can use any string to denote a regular expression, often raw

strings are easier.

For example, we want a DOS-like filename regular expression: r"[^.]{1,8}\.[^.]

{0,3}." This will match, say, readme.txt but not archive.tar.gz. Note that to match a

literal . we escaped it with a backslash. Also note that we used an interesting character class:

[^.]. This means “anything except .”: the ^ means “exclude” inside of a characer class.

Regular expressions also support grouping. Grouping does two things: it allows

addressing parts of the expression, and it allows treating a part of the expression as

a single object in order to apply one of the repeat operations to it. If only the latter is

needed, this is a “non-capture” group, denoted by (?:....).

Chapter 6 text Manipulation

78

For example, (?:[a-z]{2,5}-){1,4}[0-9] will match hello-3 or hello-world-5

but not a-hello-2 (since the first part is not two characters long) or hello-world-

this-is-too-long-7 since it is made up of six repetitions of the inner pattern, and we

specified a maximum of four.

This allows arbitrary nesting; for example (?:(?:[a-z]{2,5}-){1,4}[0-9];)+

allows any semicolon-terminated, separated sequence of the previous pattern: for

example az-2;hello-world-5; will match but this-is-3;not-good-match-6 will not,

since it is missing the ; at the end.

This is a good example of how complex regular expressions can get. It is easy to use

this dense mini-language inside Python to specify constraints on strings that are hard to

understand.

Once we have a regular expression object, there are two main methods on it: match

and search. The match method will look for matches at the beginning of the string, while

search will look for the first match, wherever it may start. When they find a match, they

return a match object.

>>> reobj = re.compile('ab+a')

>>> m = reobj.search('hello abba world')

>>> m

<_sre.SRE_Match object; span=(6, 10), match='abba'>

>>> m.group()

'abba'

The first method that is often used is .group(), which returns the part of the string

matched. This method can get a part of the match, if the regular expression contained

capturing groups. A capturing group is usually marked with ().

>>> reobj = re.compile('(a)(b+)(a)')

>>> m = reobj.search('hello abba world')

>>> m.group()

'abba'

>>> m.group(1)

'a'

>>> m.group(2)

'bb'

>>> m.group(3)

'a'

Chapter 6 text Manipulation

79

When the number of groups is significant, or when modifying the group, managing

the indices to the group can prove to be a challenge. If analysis of the groups is needed,

we can also name the groups.

>>> reobj = re.compile('(?P<prefix>a)(?P<body>b+)(?P<suffix>a)')

>>> m = reobj.search('hello abba world')

>>> m.group('prefix')

'a'

>>> m.group('body')

'bb'

>>> m.group('suffix')

'a'

Since regular expressions can get dense, there is a way to make them a bit easier to

read: the verbose mode.

>>> reobj = re.compile(r"""

... (?P<prefix>a) # The beginning -- always an a

... (?P<body>b+) # The middle -- any numbers of b, for emphasis

... (?P<suffix>a) # An a at the end to properly anchor

... """, re.VERBOSE)

>>> m = reobj.search("hello abba world")

>>> m.groups()

('a', 'bb', 'a')

>>> m.group('prefix'), m.group('body'), m.group('suffix')

('a', 'bb', 'a')

When compiling regular expressions with the flag re.VERBOSE, whitespace is

ignored, and comments, Python-like:

to end of line, are also ignored. In order to match a space or #, they need to be

backslash escaped.

This allows writing long regular expressions while still making them easier to

understand with judicious line breaks, spaces, and comments.

Regular expressions are loosely based on the mathematical theory of finite automaton.

While they do go beyond the constraints of what finite automata can match, they are not

fully general. Among other things, they are poorly suited for nested patterns; whether

matching parentheses or HTML elements, they are not a good fit for regular expressions.

Chapter 6 text Manipulation

80

6.4 JSON
JSON is a hierarchical file format that has the advantage of being simple to parse, and

reasonably easy to read and write by hand. It has its origins on the web: the name stands

for “JavaScript Object Notation.” Indeed, it is still popular on the internet; one reason to

care about JSON is that many web APIs use JSON as a transfer format.

It is also useful, however, in other places. For example, in JavaScript projects,

package.json includes the dependencies of this project. Parsing this is often useful to

determine third-party dependencies for security or compliance audits, for example.

In theory, JSON is a format defined in Unicode, not bytes. When serializing, it takes

a data structure and transforms it into a Unicode string, and when deserializing, it takes

a Unicode string and returns a data structure. Recently, however, the standard was

amended to specify a preferred encoding: utf-8. With this addition, now the format is

also defined as a byte stream.

However, note that in some use cases, the encoding is still separate from the format.

In particular, when sending or receiving JSON over HTTP, the HTTP encoding is the

ultimate truth. Even then, though, when no encoding is explicitly specified, UTF-8

should be assumed.

JSON is a simple serialization format, only supporting a few types:

• Strings

• Numbers

• Booleans

• A null type

• Arrays of JSON values

• “Objects”: dictionaries mapping strings to JSON values

Note that JSON does not full specify numerical ranges or precision. If precise integers

are required, usually the range -2∗∗53 to 2∗∗53 can be assumed to be representable

precisely.

Although the Python json library has the ability to read/write directly to files, in

practice we almost always separate the tasks; we read as much data as we need and pass

the string directly to JSON.

Chapter 6 text Manipulation

81

The two functions that are the most important in the json module are loads and

dumps. The s at the end stands for “string,” which is what those functions accept and

return.

>>> thing = [{"hello": 1, "world": 2}, None, True]

>>> json.dumps(thing)

'[{"hello": 1, "world": 2}, null, true]'

>>> json.loads(_)

[{'hello': 1, 'world': 2}, None, True]

The None object in Python maps to the JSON null object, booleans in Python map

to booleans in JSON, and numbers and strings map to number and strings. Note that the

Python JSON parsing libraries makes ad hoc decisions about whether a number should

map to an integer or a float based on the notation it uses:

>>> json.loads("1")

1

>>> json.loads("1.0")

1.0

It is important to remember not all JSON loading libraries make the same decision,

and in some cases, this can lead to interoperability problems.

For debugging reasons, it is often useful to be able to “pretty print” JSON. The dumps

function can do that, with some extra arguments. The usual set of arguments for pretty

printing is the following:

json.dumps(thing, sort_keys=True, indent=4)

If we want to round-trip into an equivalent, but pretty version, we can even do this:

json.dumps(json.loads(encoded_string), sort_keys=True, indent=4)

Finally, at the command line, the module:json.tool will do this automatically:

$ python -m json.tool < somefile.json | less

This is an easy way to scan through dumped JSON and look for interesting

information.

Chapter 6 text Manipulation

82

Note that with Python 3.7 and above, sort_keys should be used judiciously; since all

dictionaries are ordered by insertion, not using sort_keys will keep the original order in

the dictionary.

One frequently missed type from JSON is a date-time type. Usually this is

represented with strings, and is the most common need for a “schema” to parse JSON

against, in order to know which strings to convert to a datetime object.

6.5 CSV
The CSV format has a few advantages. It is constrained: it always represents scalar types

in a two-dimensional array. For this reason, there are not a lot of surprises that can go

in. In addition, it is a format that imports natively into spreadsheet applications like

Microsoft Excel or Google Sheets. This comes in handy when preparing reports.

Examples of such reports are of breaking down expenses for paying for third-party

services for the financial department, or a report on incidents managed and time to

recovery for management. In all these cases, having a format that is easy to produce and

import into spreadsheet applications allows for easy automation of the task.

Writing CSV files is done with csv.writer. A typical example involves serializing a

homogenous array, an array of things with the same type.

@attr.s(frozen=True, auto_attribs=True)

class LoginAttempt:

 username: str

 time_stamp: int

 success: bool

This class represents a login attempt by some user, at a given time, and with a record

of the success of the attempt. For a security audit, we need to send the auditors an Excel

file of the login attempts.

def write_attempts(attempts, fname):

 with open(fname, 'w') as fpout:

 writer = csv.writer(fpout)

 writer.writerow(['Username', 'Timestamp', 'Success'])

 for attempt in attempts:

 writer.writerow([

Chapter 6 text Manipulation

83

 attempt.username,

 attempt.time_stamp,

 str(attempt.success),

])

Note that by convention, the first row should be a “title row.” Though the Python API

does not enforce it, it is highly recommended to follow this convention. In this example,

we first wrote a “title row” with the names of the fields.

Then we looped through the attempts. Note that CSV can only represent strings and

numbers, so instead of relying on thinly documented standards on how a boolean will be

written out, we have done so explicitly.

This way, if the auditor asks for that field to be “yes/no,” we can change our explicit

serialization step to match.

When it comes to reading CSV files, there are two main approaches.

Using csv.reader will return an iterator that yields parsed row by parsed row, as a

list. However, assuming the convention about the first row being the names of fields has

been followed, csv.DictReader will yield nothing for the first row, and a dictionary for

every subsequent row, using field names as keys. This enables more robust parsing in the

face of end users adding fields or changing their order.

>>> reader = csv.DictReader(fileobj)

>>> list(reader)

[OrderedDict([('Username', 'alice'),

 ('Timestamp', '1514793600.0'),

 ('Success', 'False')]),

 OrderedDict([('Username', 'bob'),

 ('Timestamp', '1539154800.0'),

 ('Success', 'True')])]

Reading the same CSV that we have written in the previous example will yield

reasonable results. The dictionary maps the field names to the values. It is important

to note that the types have all been forgotten, and everything is returned as a string.

Unfortunately, CSV does not keep type information.

It is sometimes tempting to just “improvise” parsing CSV files with .split. However,

CSV has quite a few corner cases that are not readily apparent.

Chapter 6 text Manipulation

84

For example,

1,"Miami, FL","he""llo"

is properly parsed as

('1', 'Miami, FL', 'he"llo')

For the same reason, it is a good idea to avoid writing CSV files using anything other

than csv.writer.

6.6 Summary
Much of the content that is needed for many DevOps tasks arrives as text: logs, JSON

dumps of data structures, or a CSV file of paid licenses. Understanding what “text” is and

how to manipulate it in Python allow much of the automation that is the cornerstone of

DevOps, be it through build automation, monitoring result analysis, or just preparing

summaries for easy consumption by others.

Chapter 6 text Manipulation

85
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_7

CHAPTER 7

Requests
Many systems expose a web-based API. Automating web-based APIs is easy with the

requests library. It is designed to be easy to use while still exposing a lot of powerful

features. Using requests is almost always better than using Python’s standard library

HTTP client facilities.

7.1 Sessions
As mentioned before, it is better to work with explicit sessions in requests. It is

important to remember that there is no such thing as working without a session in

requests; when working with the “functions,” it is using the global session objects.

This is problematic for several reasons. For one, this is exactly the kind of “global

mutable shared state” that can cause it to be hard to diagnose bugs. For example, when

connecting to a website that uses cookies, another user of requests connecting to the

same website could override the cookies. This leads to subtle interactions between

potentially far-apart pieces of code.

The other reason it is problematic is because this makes code nontrivial to unittest.

The request.get/request.post functions would have to be explicitly mocked, instead

of supplying a fake Session object.

Last but not least, some functionality is only accessible when using an explicit

Session object. If the requirement to use it comes later, for example, because we want

to add a tracing header or a custom user-agent to all requests, refactoring all code to use

explicit sessions can be subtle.

It is much better, for any code that has any expectation to be long lived, to use an

explicit session object. For similar reasons, it is even better to make most of this code not

construct its own Session object, but rather get it as an argument.

86

This allows initializing the session elsewhere, closer to the main code. This is useful

because this means that decisions about which proxies to use, and when, can happen

closer to the end-user requirements rather than in abstract library code.

A session object is constructed with requests.Session(). After that, the only

interaction should be with the object. The session object has all the HTTP methods:

s.get, s.put, s.post, s.patch, and s.options.

Sessions can be used as contexts:

with requests.Session() as s:

 s.get(...)

At the end of the context, all pending connections will be cleaned up. This can

sometimes be important, especially if a web server has strict usage limits that we cannot

afford to exceed for any reason.

Note that counting on Python’s reference counting to close the connections can be

dangerous. Not only is that not guaranteed by the language (and will not be true, for

example, in PyPy), but small things can easily prevent this from happening. For example,

the session can be captured as a local variable in a stack trace, and that stack trace can be

involved in a circular data structure. This means that the connections will not get closed

for a potentially long time: not until Python does a circular garbage collection cycle.

The session supports a few variables that we can mutate in order to send all requests

in a specific way. The most common one to have to edit is s.auth. We will touch more

about the authentication capabilities of requests later.

Another variable that is useful to mutate is session.headers. Those are the

default headers that are sent with every request. This can sometimes be useful for the

User- Agent variable. Especially when using requests for testing our own web APIs, it

is useful to have an identifying string in the agent. This will allow us to check the server

logs and distinguish which requests came from tests as opposed to real users.

session.headers = {'User-Agent': 'Python/MySoftware ' + __version__ }

This will allow checking which version of the test code caused a problem. Especially

if the test code crashes the server, and we want to disable it, this can be invaluable in

diagnosis.

The session also holds a CookieJar in the cookies member. This is useful if we want

to explicitly flush, or check, cookies. We can also use it to persist cookies to disk and

recover them, if we want to have restartable sessions.

Chapter 7 requests

87

We can either mutate the cookie jar or replace it wholesale: any cookielib.

CookieJar-compatible object can work.

Finally, the session can have a client-side certificate in it, for use in situations where

this kind of authentication is desired. This can either be a pem file (the key and the

certificate concatenated) or a tuple with the paths to the certificate and key file.

7.2 REST
The REST name stands for “Representational State Transfer.” It is a loose, and loosely

applied, standard of representing information on the web. It is often used to map a row-

oriented database structure almost directly to the web, allowing an edit operation; when

used this way, it is often also called the “CRUD” model: Create, Retrieve, Update, and

Delete.

When using REST for CRUD, a few web operations are frequently used.

The first is create maps to POST, which is accessed via session.post. In some sense,

although the first on the list, it is the least “RESTful” of the four. This is because its

semantics are not “replay” safe.

This means that if the session.post raises a network-level error, for example,

socket.error, it is not obvious how to proceed; was the object actually created? If one

of the fields in the object must be unique, for example, an e-mail address for a user, then

replaying is safe: it will fail if the creation operation succeeded earlier.

However, this depends on application semantics, which means that it is not possible

to replay generically.

Luckily, the HTTP methods typically used for the other operations are “replay safe.”

This property is also known as idempotency, inspired by (though not identical with)

the mathematical notion of idempotent functions. This means that if a network failure

occurred, sending the operation again is safe.

All operations that follow, if the server follows correct HTTP semantics, are replay safe.

The Update operation is usually implemented with PUT (for a whole-object update)

or PATCH (when changing specific fields).

The Delete operation is implemented with HTTP DELETE. The replay safety here is

subtle; whether a replay succeeds or fails with an “object not found,” at the end we are

left in a known state.

Retrieve, implemented with HTTP GET, is almost always a read-only operation, and

so is replay safe: it is safe to retry after a network failure.

Chapter 7 requests

88

Most REST services, nowadays, use JSON as the state representation. The requests

library has special support for JSON.

>>> pprint(s.get("https://httpbin.org/json").json())

{'slideshow': {'author': 'Yours Truly',

 'date': 'date of publication',

 'slides': [{'title': 'Wake up to WonderWidgets!', 'type': 'all'},

 {'items': ['Why WonderWidgets are great',

 'Who buys WonderWidgets'],

 'title': 'Overview',

 'type': 'all'}],

 'title': 'Sample Slide Show'}}

The return value from a request, Response, has a .json() method that assumes the

return value is JSON and parses it. While this only saves one step, it is a useful step to

save in a multistage process where we get some JSON-encoded response only to use it in

a further request.

It is also possible to auto-encode the request body as JSON:

>>> resp = s.put("https://httpbin.org/put", json=dict(hello=5,world=2))

>>> resp.json()['json']

{'hello': 5, 'world': 2}

The combination of those two, with a multistep process, is often useful.

>>> res = s.get("https://api.github.com/repos/python/cpython/pulls")

>>> commits_url = res.json()[0]['commits_url']

>>> commits = s.get(commits_url).json()

>>> print(commits[0]['commit']['message'])

This example of getting a commit message from the first pull request on the CPython

project is a typical example of using a good REST API. A good REST API includes

URLs as resource identifiers. We can pass those URLs to a further request to get more

information.

Chapter 7 requests

89

7.3 Security
The HTTP security model relies on certification authorities, often shortened to “CAs.”

Certification authorities cryptographically sign public keys as belonging to a specific

domain (or, less commonly, IP). In order to enable key rotation and revocation,

certificate authorities do not sign the public key with their root key (the one trusted

by the browser). Rather, they sign a “signing key,” which signs the public key. These

“chains,” where each key signs the next one, until the ultimate key is the one the server is

using, can get long: often there is a three- or four-level deep chain.

Since certificates sign the domain, and often domains are co-hosted on the same

IP, the protocol that requests the certificate includes “Server Name Indication,” or SNI.

SNI sends the server name, unencrypted, which the client wants to connect to. Then the

server responds with the appropriate certificate, and proves that it owns the private key

corresponding to the signed public key using cryptography.

Finally, optionally the client can engage in a cryptographic proof of its own identities.

This is done through the slightly misnamed “client-side certificates.” The client side

has to be initialized with both a certificate and a private key. Then the client sends

the certificate, and if the server trusts the certifying authority, proves that it owns the

corresponding private key.

Client-side certificates are seldom used in browsers but can be sometimes used by

programs. For a program, they are usually easier secrets to deploy: most clients, requests

included, support reading them out of files already. This makes it possible to deploy

them using systems that make secrets available via files, like Kubernetes. It also means it

is easier to manage permissions on them via normal UNIX system permissions.

Note that usually, client-side certificates are not owned by a public CA. Rather, the

server owner operates a local CA, which through some locally determined procedure,

signs certificates for clients. This can be anything from an IT person signing manually, to

a Single-Sign On portal that auto-signs certificates.

In order to authenticate server-side certificates, requests needs to have a source of

client-side root CAs in order to be able to successfully accomplish secure connections.

Depending on subtleties of the ssl build process, it might or might not have access to

the system certificate store.

The best way to make sure to have a good set of root CAs is to install the package

certifi. This package has Mozilla-compatible certificates, and requests will use it

natively.

Chapter 7 requests

90

This is useful when making connections to the internet; almost all sites are tested

to work with Firefox, and so have a compatible certificate chain. If the certificate fails to

validate, the error CERTIFICATE VALIDATE FAILED is thrown. There is a lot of unfortunate

advice on the internet, including in requests documentation, about the “solution”

of passing in the flag verify=False. While there are rare cases where this flag would

make sense, it almost never does. Its usage violates the core assumption of TLS: that the

connection is encrypted and tamper-proof.

For example, having a verify=False on the request means that any cookies or

authentication credentials can now be intercepted by anyone with the ability to modify

in-stream packets. This is unfortunately common: ISPs and open access points often

have operators with nefarious motivation.

A better alternative is to make sure that the correct certificates exist on the file

system, and passing the path to the verify argument via verify='/full/path'.

At the very least, this allows us a form of “trust on first use”: manually get the

certificate from the service, and bake it into the code. It is even better to attempt some

out-of- band verification, for example, by asking someone to log in to the server and

verify the certificate.

Choosing what SSL versions to allow, or what ciphers to allow, is slightly more subtle.

There are, again, few reasons to do it: requests is set up with good, secure, defaults.

However, sometimes there are overriding concerns: for example, avoiding a specific SSL

cipher for a regulatory reason.

The first important thing to know is that requests is a wrapper around the urllib3

library. In order to change low-level parameters, we need to write a customized

HTTPAdapter and set the session object we are using to use the custom adapter.

from requests.adapters import HTTPAdapter

from requests.packages.urllib3.poolmanager import PoolManager

class MyAdapter(HTTPAdapter):

 pass

s = requests.Session()

s.mount('https://', MyAdapter())

Chapter 7 requests

91

This, of course, has no business logic effect: the MyAdapter class is not different from

the HTTPAdapter class. But now that we have the mechanics for custom adapters, we can

change the SSL versions:

class MyAdapter(HTTPAdater)

 def init_poolmanager(self, connections, maxsize, block=False):

 self.poolmanager = PoolManager(num_pools=connections,

 maxsize=maxsize,

 block=block,

 ssl_version=ssl.PROTOCOL_TLS)

Much like the ssl_version, we can also fine-tune the list of ciphers, using the

ciphers= keyword argument. This keyword argument should be a string that has

:-separated names of ciphers.

Requests also supports so-called “client-side” certificates. Seldom used for

user- to- service communication, but sometimes used in microservice architectures,

client- side certificates identify the client using the same mechanism that servers identify

themselves: using cryptographically signed proofs. The client needs a private key and a

corresponding certificate. These certificates will often be signed by a private CA, which is

part of the local infrastructure.

The certificate and the key can be concatenated into the same file, often called a

“PEM” file. In that case, initializing the session to identify with it is done via:

s = requests.Session()

s.cert = "/path/to/pem/file.pem"

If the certificate and the private key are in separate files, they are given as a tuple:

s = requests.Session()

s.cert = ("/path/to/client.cert", "/path/to/client.key")

Such key files must be carefully managed; anyone who has read access to them can

pretend to be the client.

Chapter 7 requests

92

7.4 Authentication
This will be the default authentication sent with requests. Included in requests itself, the

most commonly used authentication is basic auth.

For basic auth, this argument can be just a tuple, (username, password). However,

a better practice is to use an HTTPBasicAuth instance. This documents the intent better,

and is useful if we ever want to switch to other authentication forms.

There are also third-party packages that implement the authentication interface and

supply custom auth classes. The interface is pretty straightforward: it expects the object

to be callable and will call the object with the Request object. It is expected that the call

will mutate the Requests, usually by adding headers.

The official documentation recommends subclassing AuthBase, which is just an

object that implements a __call__ that raises a NotImplementedError. There is little

need for that.

For example, the following is useful as an object that will sign AWS requests with the

V4 signing protocol.

The first thing we do is make the URL “canonical.” Canonicalization is a first step in

many signing protocols. Since often higher levels of the software will have already parsed

the content by the time the signature checker gets to look at it, we convert the signed

data into a standard form that uniquely corresponds to the parsed version.

The most subtle part is the query part. We parse it, and re-encode it, using the

urlparse built-in library.

def canonical_query_string(query):

 if not query:

 return ""

 parsed = parse_qs(url.query, keep_blank_values=True)

 return "?" + urlencode(parsed, doseq=True)

We use this function in our URL canonicalization function:

def to_canonical_url(url):

 url = urlparse(raw_url)

 path = url.path or "/"

 query = canonical_query_string(url.query)

Chapter 7 requests

93

 return (url.scheme +

 "://" +

 url.netloc +

 path +

 querystring)

Here we make sure the path is canonical: we translate an empty path to /.

from botocore.auth import SigV4Auth

from botocore.awsrequest import AWSRequest

def sign(request, ∗, aws_session, region, service):
 aws_request = AWSRequest(

 method=request.method.upper(),

 url=to_canonical_url(request.url),

 data=request.body,

)

 credentials = aws_session.get_credentials()

 SigV4Auth(credentials, service, region).add_auth(request)

 request.headers.update(∗∗aws_request.headers.items())

We create a function that uses botocore, the AWS Python SDK, to sign a request. We

do that by “faking” an AWSRequest object with the canonical URL and the same data,

asking for a signature, and then grabbing the headers from the “faked” request.

We use this as follows:

requests_session = requests.Session()

requests_session.auth = functools.partial(sign,

 aws_session=boto3.Session(),

 region='us-east-1',

 service='es',

)

functools.partial is an easy way to get a simple callable from the original function.

Note that in this case, the region and the service are part of the auth “object.” A more

sophisticated approach would be to infer the region and service from the request’s URL

and use that. This is beyond the scope of this simple example. However, this should

Chapter 7 requests

94

give a good idea about how custom authentication schemes work: we write code that

modifies the request to have the right authentication headers, and then put it in as the

auth property on the session.

7.5 Summary
Saying “HTTP is popular” feels like an understatement. It is everywhere: from

user- accessible services, through web-facing APIs, and even internally in many

microservice architectures.

requests helps with all of these: it can help be part of monitoring a user-accessible

service for health, it can help us access APIs in programs to analyze the data, and it can

help us debug internal services to understand what their state is.

It is a powerful library, with many ways to fine-tune it to send exactly the right

requests, and get exactly the right functions.

Chapter 7 requests

95
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_8

CHAPTER 8

Cryptography
Cryptography is a necessary component in many parts of secure architecture. However,

just adding cryptography to the code does not make it more secure; care must be given to

such topics as secrets generation, secrets storage, and plain-text management. Properly

designing secure software is a complicated matter, more so when cryptography is involved.

Designing for security is beyond our scope here: this chapter only teaches the basic

tools that Python has for cryptography, and how to use them.

8.1 Fernet
The cryptography module supports the fernet cryptography standard. It is named

after an Italian, not French, wine: the “t” is pronounced. A good approximation for the

pronunciation is like “fair-net.”

fernet works for symmetric cryptography. It does not support partial or streaming

decryption: it expects to read in the whole ciphertext and to return the whole plain text.

This makes it suitable for names, text documents, or even pictures. However, videos and

disk images are a poor fit for Fernet.

The cryptographic parameters of Fernet were chosen by domain experts, who

researched available encryption methods, as well as the known, best attacks against

them. One advantage in using Fernet is that it avoids the need for you to become an

expert yourself. However, for completeness, we note that the Fernet standard uses

AES- 128 in CBC padding with PKCS7, and HMAC using SHA256 for authentication.

The Fernet standard is also supported by Go, Ruby, and Erlang and so is sometimes

suitable for data exchange with other languages. It was especially designed so that using

it insecurely is harder than using it correctly.

>>> k = fernet.Fernet.generate_key()

>>> type(k)

<class 'bytes'>

96

The key is a short string of bytes. Managing the key securely is important:

cryptography is only as good as its keys. If it is kept in a file, for example, the file should

have minimal permissions and ideally be hosted on an encrypted file system.

The generate_key class method takes care to generate the key securely, using

an operating-system level source of random bytes. However, it is still vulnerable to

operating-system level flaws: for example, when cloning virtual machines, care must

be taken that when starting the clone, it refreshes the source of randomness. This is

admittedly an esoteric case, and whatever virtualization system is being used should

have documentation on how to refresh the randomness source in its virtual machines.

>>> frn = fernet.Fernet(k)

The fernet class is initialized with a key. It will make sure that the key is valid.

>>> encrypted = frn.encrypt(b"x marks the spot")

>>> encrypted[:10]

b'gAAAAABb1'

Encryption is simple. It takes a string of bytes and returns an encrypted string.

Note that the encrypted string is longer than the source string. The reason is that it is

also signed with the secret key. This means that tampering with the encrypted string is

detectable, and the Fernet API handles that by refusing to decrypt the string. This means

that the value gotten back from decryption is trustworthy; it was indeed encrypted by

someone who had access to the secret key.

>>> frn.decrypt(encrypted)

b'x marks the spot'

Decryption is done in the same way as encryption. Fernet does contain a version

marker, so if vulnerabilities in these are found, it is possible to move the standard to a

different encryption and hashing system.

Fernet encryption always adds the current date to the signed, encrypted information.

Because of this, it is possible to limit the age of a message before decrypting.

>>> frn.decrypt(encrypted, ttl=5)

Chapter 8 Cryptography

97

This will fail if the encrypted information (sometimes referred to as the “token”) is

older than five seconds. This is useful to prevent replay attacks: one where a previous

encrypted token was captured and replayed instead of a new valid token. For example,

if the encrypted token has a list of usernames that are allowed some access, and is

retrieved using a subvertible medium, a user who is no longer allowed in can substitute

the older token.

Ensuring token freshness would mean that no such list would be decoded, and

everybody would be denied – which is no worse than if the medium was tampered with

without having a token that was previously valid.

This can also be used to ensure good secret rotation hygiene. By refusing to decrypt

anything older than, say, a week, we make sure that if the secret rotation infrastructure

broke, we would fail loudly instead of succeeding silently, and thus fix it.

In order to support seamless key rotation, the Fernet module also has a MultiFernet

class. MultiFernet takes a list of secrets. It encrypts with the first secret but will try

decrypting with any secret.

This means that if we add a new key to the end, first, it will not be used for

encryption. After the addition to the end is synchronized, we can remove the first key.

Now all encryptions will be done via the second key; and even those instances where it is

not synchronized yet will have the decryption key available.

This two-step process is designed to have zero “invalid decryption” errors while still

allowing key rotation, which is important as a precautionary measure – and a well-tested

rotation procedure means that if keys are leaked, the rotation procedure can minimize

the harm they do.

8.2 PyNaCl
PyNaCl is a library wrapping the libsodium C library. libsodium is a fork of Daniel

J. Bernstein’s libnacl, which is why PyNaCl is named that way. (NaCl, or Sodium

Chloride, is the chemical formula for salt. The fork took the name of the first element.)

PyNaCl supports both symmetric and asymmetric encryption. However, since

cryptography supports symmetric encryption with Fernet, the main use of PyNaCl is for

asymmetric encryption.

The idea of asymmetric encryption is that there is a private and a public key. The public

key can easily be calculated from the private key but not vice versa; that is, the “asymmetry”

it refers to. The public key is published, while the private key must remain a secret.

Chapter 8 Cryptography

98

There are, in general, two basic operations supported with public-key cryptography.

We can encrypt with the public key, in a way that can only be decrypted with the

private key. We can also sign with the private key, in a way that can be verified with the

public key.

As we have discussed earlier, modern cryptographic practice places as much

value on authentication as it does on secrecy. This is because if the media the secret is

transmitted on is vulnerable to eavesdropping, it is often vulnerable to modification.

Secret modification attacks have had enough impact on the field that a cryptographic

system is not considered complete if it does not guarantee both authenticity and secrecy.

Because of that, libsodium, and by extension PyNaCl, do not support encryption

without signing, or decryption without signature verification.

In order to generate a private key, we just use the class method:

>>> from nacl.public import PrivateKey

>>> k = PrivateKey.generate()

The type of k is PrivateKey. However, at some point, we will usually want to persist

the private key.

>>> type(k.encode())

<class 'bytes'>

The encode method encodes the secret key as a stream of bytes.

>>> kk = PrivateKey(k.encode())

>>> kk == k

True

We can generate a private key from the byte stream, and it will be identical. This

means we can again keep the private key in a way we decide is secure enough: a secret

manager, for example.

In order to encrypt, we need a public key. Public keys can be generated from

private keys.

>>> from nacl.public import PublicKey

>>> target = PrivateKey.generate()

>>> public_key = target.public_key

Chapter 8 Cryptography

99

Of course, in a more realistic scenario, public keys need to be stored somewhere: in

a file, in a database, or just sent via the network. For that, we need to convert the public

key into bytes.

>>> encoded = public_key.encode()

>>> encoded[:4]

b'\xb91>\x95'

When we get the bytes, we can regenerate the public key. It is identical to the original

public key.

>>> public_key_2 = PublicKey(key_bytes)

>>> public_key_2 == public_key

True

A PyNaCl Box represents pair of keys: the first private, the second public. The Box

signs with the private key, then encrypts with the public key. Every message that we

encrypt always gets signed.

>>> from nacl.public import PrivateKey, PublicKey, Box

>>> source = PrivateKey.generate()

>>> with open("target.pubkey", "rb") as fpin:

... target_public_key = PublicKey(fpin.read())

>>> enc_box = Box(source, target_public_key)

>>> result = enc_box.encrypt(b"x marks the spot")

>>> result[:4]

b'\xe2\x1c0\xa4'

This one signs using the source private key and encrypts using the target’s

public key.

When we decrypt, we need to build the inverse box. This happens on a different

computer: one that has the target private key but only the source’s public key.

>>> from nacl.public import PrivateKey, PublicKey, Box

>>> with open("source.pubkey", "rb") as fpin:

... source_public_key = PublicKey(fpin.read())

>>> with open("target.private_key", "rb") as fpin:

... target = PrivateKey(fpin.read())

Chapter 8 Cryptography

100

>>> dec_box = Box(target, source_public_key)

>>> dec_box.decrypt(result)

b'x marks the spot'

The decryption box decrypts with target private key and verifies the signature

using source’s public key. If the information has been tampered with, the decryption

operation automatically fails. This means that it is impossible to access plain-text

information that is not correctly signed.

Another piece functionality that is useful inside of PyNaCl is cryptographic signing.

It is sometimes useful to sign without encryption: for example, we can make sure to only

use approved binary files by signing them. This allows the permissions for storing the

binary file to be loose, as long as we trust that the permissions on keeping the signing key

secure are strong enough.

Signing also involves asymmetric cryptography. The private key is used to sign, and

the public key is used to verify the signatures. This means that we can, for example,

check the public key into source control, and avoid needing any further configuration of

the verification part.

We first have to generate the private signing key. This is similar to generating a key

for decryption.

>>> from nacl.signing import SigningKey

>>> key = SigningKey.generate()

We will usually need to store this key (securely) somewhere for repeated use. Again,

it is worthwhile remembering that anyone who can access the signing key can sign

whatever data they want. For this, we can use encoding:

>>> encoded = key.encode()

>>> type(encoded)

<class 'bytes'>

The key can be reconstructed from the encoded version. That produces

an identical key.

>>> key_2 = SigningKey(encoded)

>>> key_2 == key

True

Chapter 8 Cryptography

101

For verification, we need to have the verification key. Since this is asymmetric

cryptography, the verification key can be calculated from the signing key, but not vice versa.

>>> verify_key = key.verify_key

We will usually need to store the verification key somewhere, so we need to be able

to encode it as bytes.

>>> verify_encoded = verify_key.encode()

>>> verify_encoded[:4]

b'\x08\xb1\x9e\xf4'

We can reconstruct the verification key. That gives an identical key. Like all ...Key

classes, it supports a constructor that accepts an encoded key and returns a key object.

>>> from nacl.signing import VerifyKey

>>> verify_key_2 = VerifyKey(verify_encoded)

>>> verify_key == verify_key_2

True

When we sign a message, we get an interesting object back:

>>> message = b"The number you shall count is three"

>>> result = key.sign(message)

>>> result

b'\x1a\xd38[....'

It displays as bytes. But it is not bytes:

>>> type(result)

<class 'nacl.signing.SignedMessage'>

We can extract the message and the signature from it separately:

>>> result.message

b'The number you shall count is three'

>>> result.signature

b'\x1a\xd38[...'

Chapter 8 Cryptography

102

This is useful in case we want to save the signature in a separate place. For example,

if the original is in an object storage, mutating it might be undesirable for various

reasons. In those cases, we can keep the signatures “on the side.” Another reason is to

maintain different signatures for different purposes, or to allow key rotation.

If we do want to write the whole signed message, it is best to explicitly convert the

result to bytes.

>>> encoded = bytes(result)

The verification returns back the verified message. This is the best way to use

signatures; this way, it is impossible for the code to handle an unverified message.

>>> verify_key.verify(encoded)

b'The number you shall count is three'

However, if it is necessary to read the object itself from somewhere else, and then

pass it into the verifier, that is also easy to do.

>>> verify_key.verify(b'The number you shall count is three',

... result.signature)

b'The number you shall count is three'

Finally, we can just use the result object as is to verify.

>>> verify_key.verify(result)

b'The number you shall count is three'

8.3 Passlib
Secure storage of passwords is a delicate matter. The biggest reason it is so subtle is that

it has to deal with people who do not use password best practices. If all passwords were

strong, and people never reused passwords from site to site, password storage would be

straightforward.

However, people usually choose passwords with little entropy (123456 is still

unreasonably popular, as well as password), they have a “standard password” that

they use for all websites, and they are often vulnerable to phishing attacks and social

engineering attacks where they divulge the password to an unauthorized third party.

Chapter 8 Cryptography

103

Not all of these threats can be stopped by correctly storing passwords, but many of

them can, at least, be mitigated and weakened.

The passlib library is written by people who are well versed in software security,

and tries to, at least, eliminate the most obvious mistakes when saving passwords.

Passwords are never saved in plain text – always hashed.

Note that hashing algorithms for passwords are optimized for different use cases

than hashing algorithms used for other reasons: for example, one of the things they try to

deny is brute-force source mapping attacks.

Passlib hashes passwords with the latest vetted algorithms optimized for password

storage, and they intended to avoid any possibility of side-channel attacks. In addition,

“salt” is always used for hashing the passwords.

Although passlib can be used without understanding these things, it is worthwhile

to understand them in order to avoid mistakes while using passlib.

Hashing means taking the users’ passwords and running it through a function that is

reasonably easy to compute but hard to invert. This means that even if an attacker gets

access to the password database, they cannot recover users’ passwords and pretend to

be them.

One way that the attacker can try to get the original passwords is to try all

combinations of passwords they can come up with, hash them, and see if they are

equal to a password. In order to avoid this, special algorithms are used that are

computationally hard. This means that an attacker would have to use a lot of resources

in order to try many passwords, so that even if, say, only a few million passwords are

tried, it would take a long time to compare. Lastly, attackers can use something called

“rainbow tables” to precompute many hashes of common passwords, and compare

them all at once against a password database. In order to avoid that, passwords are

“salted” before they are hashed: a random prefix (the “salt”) is added, the password is

hashed, and the salt is prefixed to the hash value. When the password is received from

the user, the salt is retrieved from the beginning of the hash value, before hashing it to

compare.

Doing all of this from scratch is hard and even harder to get it right. Getting it “right”

does not just mean having users log in, but being resilient to the password database

being stolen. Since there is no feedback about that aspect, it is best to use a well-tested

library.

Chapter 8 Cryptography

104

The library is storage agnostic: it does not care where the passwords are being

stored. However, it does care that it is possible to update the hashed passwords. This

way, hashed passwords can get updated to newer hashing schemes as the need arises.

While passlib does support various low-level interfaces, it is best to use the high-level

interface of the CryptContext. The name is misleading, since it does no encryption; it is

a reference to vaguely similar (and largely deprecated) functionality built into Unix.

The first thing to do is to decide on a list of supported hashes. Note that not all of

them have to be good hashes; if we have supported bad hashes in the past, they still have

to be in the list. In this example, we choose argon2 as our preferred hash but allow a few

more options.

>>> hashes = ["argon2", "pbkdf2_sha256", "md5_crypt", "des_crypt"]

Note that md5 and des have serious vulnerabilities and are not suitable to use in real

applications. We added them because there might be old hashes using them. In contrast,

even though pbkdf2_sha256 is, probably, worse than argon2, there is no urgent need to

update it. We want to mark md5 and des as deprecated.

>>> deprecated = ["md5_crypt", "des_crypt"]

Finally, after having made the decisions, we build the crypto context:

>>> from passlib.context import CryptContext

>>> ctx = CryptContext(schemes=hashes, deprecated=deprecated)

It is possible to configure other details, such as the number of rounds. This is almost

always unnecessary, as the defaults should be good enough.

Sometimes we will want to keep this information in some configuration (for

example, an environment variable or a file) and load it; this way, we can update the list

of hashes without modifying the code.

>>> serialized = ctx.to_string()

>>> new_ctx = CryptContext.from_string(serialized)

When saving the string, note that it does contain newlines; this might impact where

it can be saved. If needed, it is always possible to convert it to base64.

On user creation or change password, we need to hash the password before storing

it. This is done via the hash method on the context.

>>> res = ctx.hash("good password")

Chapter 8 Cryptography

105

When logging in, the first step is to retrieve the hash from storage. After retrieving

the hash, and having the users’ passwords from the user interface, we need to check that

they match, and possibly update the hash if it is using a deprecated protocol.

>>> ctx.verify_and_update("good password", res)

(True, None)

If the second element were true, we would need to update the hash with the result.

In general, it is not a good idea to specify a specific hash algorithm, but to trust the

context defaults. However, in order to showcase the update, we can force the context to

hash with a weak algorithm.

>>> res = ctx.hash("good password", scheme="md5_crypt")

In that case, verify_and_update would let us know we should update the hash:

>>> ctx.verify_and_update("good password", res)

(True, '5...')

In that case, we would need to store the second element in our password hash

storage.

8.4 TLS Certificates
Transport Layer Security (TLS) is a cryptographic way to protect data in transit. Since

one potential attack is man-in-the-middle, it is important to be able to verify that

the endpoints are correct. For this reason, the public keys are signed by Certificate

Authorities. Sometimes, it is useful to have a local certificate authority.

One case where that can be useful is in microservice architectures, where verifying

each service is the right one allows a more secure installation. Another case where that

is useful is for putting together an internal test environment, where using real certificate

authorities is sometimes not worth the effort; it is easy enough to install the local

certificate authority as locally trusted and sign the relevant certificates with it.

Another place that this can be useful is in running tests. When running integration

tests, we would like to set up a realistic integration environment. Ideally, some of these

tests would check that; indeed, TLS is used rather than plain text. This is impossible to

test if, for purposes of testing, we downgrade to plain-text communication. Indeed, the

root cause of many production security breaches is that the code, inserted for testing, to

Chapter 8 Cryptography

106

enable plain-text communication, was accidentally enabled (or possible to maliciously

enable) in production; and furthermore, it was impossible to test that such bugs did not

exist, because the testing environment did have plain-text communication.

For the same reason, allowing TLS connections without verification in the testing

environment is dangerous. This means that the code has a non-verification flow, which

can accidentally turn on, or maliciously be turned on, in production, and is impossible

to prevent with testing.

Creating a certificate manually requires access to the hazmat layer in cryptography.

This is so named because this is dangerous; we have to judiciously choose encryption

algorithms and parameters, and the wrong choices can lead to insecure modes.

In order to perform cryptography, we need a “back end.” This is because originally

it was intended to support multiple back ends. This design is mostly deprecated, but we

still need to create it and pass it around.

>>> from cryptography.hazmat.backends import default_backend

Finally, we are ready to generate our private key. For this example, we will use 2048

bits, which is considered “reasonably secure” as of 2019. A complete discussion of which

sizes provide how much security is beyond the scope of this chapter.

>>> from cryptography.hazmat.primitives.asymmetric import rsa

>>> private_key = rsa.generate_private_key(

... public_exponent=65537,

... key_size=2048,

... backend=default_backend()

...)

As always in asymmetric cryptography, it is possible (and fast) to calculate the public

key from the private key.

>>> public_key = private_key.public_key()

This is important, since the certificate only refers to the public key. Since the private

key is never shared, it is not worthwhile, and actively dangerous, to make any assertions

about it.

Chapter 8 Cryptography

107

The next step is to create a certificate builder. The certificate builder will be used to

add “assertions” about the public key. In this case, we are going to finish by self-signing

the certificate, since CA certificates are self-signed.

>>> from cryptography import x509

>>> builder = x509.CertificateBuilder()

We then add names. Some names are required, though it is not important to have

specific contents in them.

>>> from cryptography.x509.oid import NameOID

>>> builder = builder.subject_name(x509.Name([

... x509.NameAttribute(NameOID.COMMON_NAME, 'Simple Test CA'),

...]))

>>> builder = builder.issuer_name(x509.Name([

... x509.NameAttribute(NameOID.COMMON_NAME, 'Simple Test CA'),

...]))

We need to decide a validity range. For this, it is useful to be able to have a “day”

interval for easy calculation.

>>> import datetime

>>> one_day = datetime.timedelta(days=1)

We want to make the validity range start “slightly before now.” This way, it will be

valid for clocks with some amount of skew.

>>> today = datetime.date.today()

>>> yesterday = today - one_day

>>> builder = builder.not_valid_before(yesterday)

Since this certificate will be used for testing, we do not need to have it be valid for a

long time. We will make it valid for 30 days.

>>> next_month = today + (30 ∗ day)
>>> builder = builder.not_valid_after(next_month)

The serial number needs to uniquely identify the certificate. Since keeping enough

information to remember which serial numbers we used is complicated, we choose a

Chapter 8 Cryptography

108

different path: choosing a random serial number. The probability of having the same

serial number chosen twice is extremely low.

>>> builder = builder.serial_number(x509.random_serial_number())

We then add the public key that we generated. This certificate is made of assertions

about this public key.

>>> builder = builder.public_key(public_key)

Since this is a CA certificate, we need to mark it as a CA certificate.

>>> builder = builder.add_extension(

... x509.BasicConstraints(ca=True, path_length=None),

... critical=True)

Finally, after we have added all the assertions into the builder, we need to generate

the hash and sign it.

>>> from cryptography.hazmat.primitives import hashes

>>> certificate = builder.sign(

... private_key=private_key, algorithm=hashes.SHA256(),

... backend=default_backend()

...)

This is it! We now have a private key, and a self-signed certificate that claims to be a

CA. However, we will need to store them in files.

The PEM file format is friendly to simple concatenation. Indeed, usually this is

how certificates are stored: in the same file with the private key (since they are useless

without it).

>>> from cryptography.hazmat.primitives import serialization

>>> private_bytes = private_key.private_bytes(

... encoding=serialization.Encoding.PEM,

... format=serialization.PrivateFormat.TraditionalOpenSSL,

... encryption_algorithm=serialization.NoEncrption())

>>> public_bytes = certificate.public_bytes(

... encoding=serialization.Encoding.PEM)

>>> with open("ca.pem", "wb") as fout:

Chapter 8 Cryptography

109

... fout.write(private_bytes + public_bytes)

>>> with open("ca.crt", "wb") as fout:

... fout.write(public_bytes)

This gives us the capability to now be a CA.

In general, for real certificate authorities, we need to generate a Certificate Signing

Request (CSR) in order to prove that the owner of the private key actually wants that

certificate. However, since we are the certificate authority, we can just create the

certificate directly.

There is no difference between creating a private key for a certificate authority and a

private key for a service.

>>> service_private_key = rsa.generate_private_key(

... public_exponent=65537,

... key_size=2048,

... backend=default_backend()

...)

Since we need to sign the public key, we need to again calculate it from the private

key:

>>> service_public_key = service_private_key.public_key()

We create a new builder for the service certificate:

>>> builder = x509.CertificateBuilder()

For services, the COMMON_NAME is important; this is what the clients will verify the

domain name against.

>>> builder = builder.subject_name(x509.Name([

... x509.NameAttribute(NameOID.COMMON_NAME, 'service.test.local')

...]))

We assume that the service will be accessed as service.test.local, using some

local test resolution. Once again, we limit our certificate validity to about a month.

>>> builder = builder.not_valid_before(yesterday)

>>> builder = builder.not_valid_after(next_month)

Chapter 8 Cryptography

110

This time, we sign the service public key:

>>> builder = builder.public_key(public_key)

However, we sign with the private key of the CA; we do not want this certificate to be

self-signed.

>>> certificate = builder.sign(

... private_key=private_key, algorithm=hashes.SHA256(),

... backend=default_backend()

...)

Again, we write a PEM file with the key and the certificate:

>>> private_bytes = service_private_key.private_bytes(

... encoding=serialization.Encoding.PEM,

... format=serialization.PrivateFormat.TraditionalOpenSSL,

... encryption_algorithm=serialization.NoEncrption())

>>> public_bytes = certificate.public_bytes(

... encoding=serialization.Encoding.PEM)

>>> with open("service.pem", "wb") as fout:

... fout.write(private_bytes + public_bytes)

The service.pem file is in a format that can be used by most popular web servers:

Apache, Nginx, HAProxy, and many more. It can also be used directly by the Twisted web

server, by using the txsni extension.

If we add the ca.crt file to the trust root, and run, say, an Nginx server, on an IP that

our client would resolve from service.test.local, then when we connect clients to

https://service.test.local, they will verify that the certificate is indeed valid.

8.5 Summary
Cryptography is a powerful tool but one that is easy to misuse. By using well-understood

high-level functions, we reduce many of the risks in using cryptography. While this

does not substitute proper risk analysis and modeling, it does make this exercise

somewhat easier.

Python has several third-party libraries with well-vetted code, and it is a good idea to

use them.

Chapter 8 Cryptography

111
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_9

CHAPTER 9

Paramiko
Paramiko is a library that implements the SSH protocol, commonly used to remotely

manage UNIX systems. SSH was originally invented as a secure alternative to the “telnet”

command, but soon became the de facto remote management tool. Even systems that

use custom agents to manage a server fleet, such as Salt, will often be bootstrapped

with SSH to install the custom agents. When a system is described as “agent-less,” as,

for example, Ansible is, it usually means that it uses SSH as its underlying management

protocol.

Paramiko wraps the protocol and allows both high-level and low-level abstractions.

In this chapter, we will concentrate mostly on the high-level abstractions.

Before delving into the details, it is worthwhile to note the synergy that Paramiko

has with Jupyter. Using a Jupyter notebook, and running Paramiko inside it, allows

a powerful auto-documented remote-control console. The ability to have multiple

browsers connected to the same notebook means it has a native ability to share

troubleshooting sessions for remote servers, without the need for cumbersome

screen sharing.

9.1 SSH Security
The “S” in “SSH” stands for “Secure.” The reason to use SSH is because we believe it

allows us to securely control and configure remote hosts. However, security is a subtle

topic. Even if the underlying cryptographic primitives, and the way the protocol uses

them, are secure, we must use them properly in order to prevent misusage from causing

an issue that opens the door for a successful attack.

It is important to understand how SSH thinks about security in order to use it in a

secure way. Unfortunately, it was built at a time when “affordance for security” was not

considered a high priority. It is easy to use SSH that negates all security benefits gotten

from it.

112

The SSH protocol establishes mutual trust – the client is assured that the server is

authentic, and the server is assured that the client is authentic. There are several ways it

can establish this trust, but in this explanation, we will cover the public key method. This

is the most common one.

The server’s public key is identified by a fingerprint. This fingerprint confirms

the server’s identity in one of two ways. One way is by being communicated by a

previously- established secure channel, and saved in a file.

For example, when an AWS EC2 server boots up, it prints the fingerprint to its virtual

console. The contents of the console can be retrieved using an AWS API call (which is

secured using the web’s TLS model) and parsed to retrieve the fingerprint.

The other way, sadly more popular, is the TOFU model – “Trust On First Use.” This

means that in the initial connection, the fingerprint is assumed to be authentic and

stored in a secure location locally. On any subsequent attempts, the fingerprint will be

checked against the stored fingerprint, and a different fingerprint will be marked as an

error.

The fingerprint is a hash of the server’s public key. If the fingerprints are the same, it

means the public keys are the same. A server can provide proof that it knows the private

key that corresponds to a given public key. In other words, a server can say “here is my

fingerprint” and prove that it is indeed a server with that fingerprint. Therefore, if the

fingerprint is confirmed, we have established cryptographic trust with the server.

On the other side, users can indicate to the server which public keys they trust.

Again, this is often done via some out-of-band mechanism: a web API for the system

administrator to put in a public key, a shared filesystem, or a boot script that reads

information from the network. Regardless of how it is done, a user’s directory can

contain a file that means “please authorize connections which can prove they have a

private key corresponding to this public key as coming from me.”

When an SSH connection is established, the client will verify the server’s identity as

above, and then will provide proof that it owns a private key that corresponds to some

public key on the server. If both of these steps succeed, the connection is verified in both

directions and can be used for running commands and modifying files.

9.2 Client Keys
Client private and public keys are kept in files that are next to each other. Often users will

already have an existing key, but if not, this is easily remedied.

Chapter 9 paramiko

113

Generating the key itself is easily done from paramiko. We choose an ECDSA key.

The EC stands for “elliptic curve.” Elliptic curve asymmetric cryptography has better

resistance for attacks for the same key size than the older prime number-based

cryptography. There is also much less progress in “partial solutions” to EC cryptography,

so the consensus in the cryptographic community that they are probably more secure

against “nonpublic” actors.

>>> from paramiko import ecdsakey

>>> k = ecdsakey.ECDSAKey.generate()

As always with asymmetric cryptography, calculating the public part of the key from

the private part is fast and straightforward.

>>> public_key = k.get_base64()

Since this is public, we do not have to worry too much about writing it to a file.

>>> with open("key.pub", "w") as fp:

... fp.write(public_key)

However, when we write out the private part of the key, we want to make sure that

the file permissions are secure. The way we do that is that after opening the file, but

before writing any sensitive data to it, we change the mode.

Note that this is not perfectly safe; the file might have the wrong user if written to the

wrong directory, and since some file systems sync the data and metadata separately, a

crash at exactly the wrong time can lead to the data being in the file, but with a bad file

mode attached. This is only the minimum we need to do to safely write a file.

>>> import os

>>> with open("key.priv", "w") as fp:

... os.chmod(0o600, "key.priv")

... k.write_private_key(fp)

We choose the mode 0o600, which is octal 600. If we write the bits corresponding

to this octal code, they are 110000000, which translates to rw-------: read and write

permissions for owner, no permissions for nonowner group members, no permissions

for anyone else.

Now through some out-of-band mechanism, we need to push the public key to the

relevant server.

Chapter 9 paramiko

114

For example, depending on the cloud service, code such as:

set_user_data(machine_id,

f"""

ssh_authorized_keys:

 - ssh-ecdsa {public_key}

""")

where set_user_data is implemented using the cloud API, will work on any server

that uses cloudinit.

Another thing that is sometimes done is using a Docker container as a bastion.

This means we expect users to SSH into the container, and from the container into the

specific machine that they need to run commands on.

In this case, a simple COPY instruction at build time (or a docker cp at runtime, as

appropriate) will accomplish the goal. Note that it is perfectly fine to publish to a Docker

registry an image with public keys in it – indeed, the requirement that this is a safe

operation is part of the definition of public keys.

9.3 Host Identity
As mentioned earlier, the most common, first line of defense against a man-in-the- middle

attack in SSH is the so-called TOFU principle – “Trust on First Use.” For this to work, after

connecting to a host, its fingerprint must be saved in a cache.

The location of that cache used to be straightforward – a file in the user’s home

directory. However, more modern setups of immutable, throwaway, environments,

multiple user machines, and other complications make this more complicated.

It is hard to make a recommendation more general than “share with as many trusted

sources as possible.” However, to enable that guideline, Paramiko does offer some

facilities:

• A client can set a MissingHostKeyPolicy, which is any instance

that supports an interface. This means that we can have logic to

document the key, or query an external database for it.

• An abstraction of the most common format on UNIX systems, the

known_hosts file. This allows Paramiko to share experiences with keys

with the regular SSH client – both by reading it and documenting new

entries.

Chapter 9 paramiko

115

9.4 Connecting
While there are lower-level ways of connecting, the recommended high-level interface is

SSHClient.

Since SSHClient instances need to be closed, it is a good idea (if possible) to use

contextlib.closing as a context manager:

with contextlib.context(SSHClient()) as client:

 client.connect(some_host)

 ## Do things with client

Doing this at close to the top level allows us to use client as argument to functions,

while guaranteeing that it will get closed at the end.

Sometimes, before connecting, we want to configure various policies on the client.

This is sometimes useful to do in a function that returns a ready-to-connect client.

These are some of the methods that are useful in preparing to connect relate to the

manner of verifying authenticity:

• load_system_host_keys will load keys from a source that is managed

by other systems. This means they will be used for verifying hosts, but

they will not be saved if we choose to save keys.

• load_host_keys will load keys from a source that is managed by us.

This means that if we choose to save the keys, these will be saved

along. For example, we might have a directory with consecutive files,

keys.1, keys.2, . . . and load from the latest one. We can save to the

newer file on save, and thus have a safe way to recover from problems

(just load a previous version).

• set_missing_host_policy(policy) expects an object with the

method missing_host_key. This method will be called with

client, hostname, key, and its behavior will determine what to do;

an exception will stop the connection, while a successful return will

allow the connection to go forward. For example, this can put the

host’s key in a “tentative” file and raise an exception. The user can

look at the tentative file, follow a verification procedure, and add the

key to a file loaded by the next iteration.

Chapter 9 paramiko

116

The connect method takes quite a few arguments. All of them except the hostname

are optional. The more important ones are the following:

• hostname – the server to connect to.

• port is needed if we are running on a special port, other than 22.

This is sometimes done as part of a security protocol; attempting a

connection to port 22 automatically denies all further connections

from the IP, while the real server runs on 5022 or a port that is only

discoverable via API.

• username – while the default is the local user, this is true less and less.

Often cloud virtual machine images have a default “system” user.

• pkey – a private key to use for authentication. This is useful if we

want some programmatic way to get the private key (for example,

retrieving it from a secret manager).

• allow_agent – this is True by default, for good reasons. This is often

a good option, since it means the private key itself will never be

loaded by our process, and by extension, cannot be divulged by our

process: no accidental logging, debug console, or memory dump is

vulnerable.

• look_for_keys – set to False, and give no other key options, to force

using an agent.

9.5 Running Commands
The “SH” in SSH stands for shell. The original SSH was invented as a telnet substitute,

and its main job is still to run commands on remote machines. Note that “remote” is

taken metaphorically, not always literally. SSH is sometimes used to control Virtual

Machines, and sometimes even containers, which might be running close by.

After a Paramiko client has connected, it can run commands on the remote host.

This is done using the client method exec_command. Note that this method takes the

command to be executed as a string, not a list. This means that extra care must be

exercised when interpolating user values into the command, to make sure that it does

not give a user complete execution privileges.

Chapter 9 paramiko

117

The return value is the standard input, output, and error of the command. This

means that the responsibility of communicating carefully with the command, to avoid

deadlocks, is firmly in the hands of the end user.

The client also has a method invoke_shell, which will create a remote shell and

allow programmatic access to it. It returns a Channel object, connected directly to the

shell. Using the send method on the channel will send data to the shell – just as if a

person was typing at the terminal. Similarly, the recv method allows retrieving the

output.

Note that this can be tricky to get right, especially around timing. In general, using

exec_command is much safer. Opening an explicit shell is rarely needed, unless we

need to run commands that work correctly in a terminal. For example, running visudo

remotely would need a real shell-like access.

9.6 Emulating Shells
We have mentioned that the client has a invoke_shell, which will create a remote shell

and allow programmatic access to it.

While we can use send and recv methods on the returned Channel, it is sometimes

easier to use it as a file.

>>> channel = client.invoke_shell()

>>> input = channel.makefile("wb")

>>> output = channel.makefile("rb")

Now writing to the input of the command can be done with input.write, and

reading can be done with output.write. Note that this is still subtle: timing and

buffering effects can still cause nondeterministic issues.

Notice that it is always possible to channel.close and create a new shell, without

reconnecting. Therefore, it is a good idea to make sure the shell usage is idempotent.

In that case, simple timeouts can help recover from situations where the flow is “stuck,”

closing and retrying.

Chapter 9 paramiko

118

9.7 Remote Files
In order to start file management, we call the client’s open_sftp method. This returns

an SFTPClient object. We will use methods on this object for all of our remote file

manipulation.

Internally, this starts a new SSH channel on the same TCP connection. This means

that even while transferring files back and forth, the connection can still be used to

send commands to the remote host. SSH does not have a notion of “current directory.”

Though SFTPClient emulates it, it is better to avoid relying on it and instead use fully

qualified paths for all file manipulation. This will make code easier to refactor, and it will

not have subtle dependencies on order of operations.

9.7.1 Metadata Management
Sometimes we do not want to change the data, but merely filesystem attributes.

The SFTPClient object allows us to do the normal manipulation that we expect.

The chmod method corresponds to os.chmod – it takes the same arguments. Since

the second argument to chmod is an integer that is interpreted as a permission bitfield,

it is best expressed in octal notation. Thus, the best way to set a file to the “regular”

permissions (read/write by owner, read to world) is by this:

client.chmod("/etc/some_config", 0o644)

Note that the 0644 notation, borrowed from C, does not work in Python 3 (and is

deprecated in Python 2). The 0o644 notation is more explicit and Pythonic.

Sadly, nothing protects us from passing in nonsense like this:

client.chmod("/etc/some_config", 644)

(This would correspond to -w----r-- in a directory listing, which is not insecure –

but very confusing!)

Some more metadata manipulation methods are these:

• chown

• listdir_iter – used to retrieve file names and metadata

• stat, lstat – used to retrieve file metadata

Chapter 9 paramiko

119

• posix_rename – used to atomically change a file’s name (do not use

rename – it has confusingly different semantics, and at this point is

there for backward compatibility)

• mkdir, rmdir – create and remove directories

• utime – set access and modified times of file

9.7.2 Upload
There are two main ways to upload files to a remote host with Paramiko. One is to simply

use put. This is definitely the easiest way – give it a local path and a remote path, and it

will copy the file. The function also accepts other parameters – mainly a callback to call

with intermediate progress. However, in practice, it is better to upload in a different way

if such sophistication is required.

The open method on an SFTPClient returns an open file-like object. It is fairly

straightforward to write a loop that copies block by block, or line by line, remotely.

In that case, logic for progress could be embedded in the loop itself, instead of having to

supply a callback function, and carefully maintain states between calls.

9.7.3 Download
Much like uploading, there are two ways to retrieve files from the remote host. One is via

the get method, which gets the names of the remote and local files, and manages the

copying.

The other is again by using the open method, this time in read mode instead of

write, and copying block by block or line by line. Again, if a progress indicator is needed,

or feedback from the user is desired, that is the better approach.

9.8 Summary
Most UNIX-based servers can be managed remotely using the SSH protocol. Paramiko

is a powerful way to automate management tasks in Python, while assuming the least

about any server: just that it runs an SSH server, and that we have permissions to log in.

Chapter 9 paramiko

121
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_10

CHAPTER 10

Salt Stack
Salt belongs to a class of systems called “configuration management systems,” intended

to make administrating a large number of machines easier. It does so by applying the

same rules to different machines, making sure that any differences in their configuration

are intentional.

It is both written in Python and, more importantly, extensible in Python. For

example, wherever a YAML file is used, salt will allow a Python file that defines a

dictionary.

10.1 Salt Basics
The salt (or sometimes “SaltStack”) system is a system configuration management

framework. It is designed to bring operating systems into a specific configuration. It is

based on the “convergence loop” concept. When running salt, it does three things:

• Calculates the desired configuration,

• Calculates how the system differs from the desired configuration,

• Issues commands to bring the system to the desired configuration.

Some extensions to Salt go beyond the “operating system” concept to configure some

SaaS products into a desired configuration: for example, there is support for Amazon

Web Services, PagerDuty, or some DNS services (those supported by libcloud).

Since in a typical environment not all operating systems will need to be configured

exactly the same way, Salt allows detecting properties of systems and specifying which

configurations apply to which systems. At runtime, Salt uses those to decide what is the

complete desired state and enforce it.

122

There are a few ways to use salt:

• Locally: run a local command that will take the desired steps.

• SSH: The server will ssh into clients and run commands that will

take the desired steps.

• Native protocol: clients will connect to the server and take whatever

steps the server instructs them to do.

Using the ssh mode removes the need of installing a dedicated client on the remote

hosts, since in most configurations, an SSH server is already installed. However, Salt’s

native protocol for managing remote hosts has several advantages.

For one, it allows the clients to connect to the server, thus simplifying

discovery – all we need for discovery is just for clients to the server. It also scales better.

Finally, it allows us to control which Python modules are installed in the remote client,

which is sometimes essential for Salt extensions.

In the case where some Salt configuration requires an extension that needs a custom

module, we can take a hybrid approach: use the SSH-based configuration to bring a

host to the point where it knows where the server is, and how to connect to it; and then

specify how to bring that host to the desired configuration.

This means there will be two parts to the server: one that uses SSH to bring up

the system to a basic configuration that, among other things, has a salt client; with

the second part waiting for the client to connect in order to send it to the rest of the

configuration.

This has the advantage of solving the “secret bootstrapping” problem. We verify the

client host’s SSH key using a different mechanism, and when connecting to it via Salt,

inject the Salt secret to allow the host to connect to it.

When we do choose the hybrid approach, there needs to be a way to find all

machines. When using some cloud infrastructure, it is possible to do this using API

queries. However we get this information, we need to make it accessible to Salt.

This is done using a roster. The roster is a YAML file. The top level is the “logical

machine name.” This is important, since this will be how the machine is addressed

using Salt.

file_server: # logical name of machine

 user: moshe # username

 sudo: True # boolean

 priv: /usr/local/key # path to private key

Chapter 10 Salt StaCk

123

print_server: # logical name of machine

 user: moshe # username

 sudo: True # boolean

 priv: /usr/local/key2 # path to private key

In ideal circumstances, all parameters will be identical for the machines. The user

is the user to SSH as. The sudo boolean is whether sudo is needed: this is almost always

True. The only exception is if we SSH as an administrative user (usually root). Since it is a

best practice to avoid SSH as root, this is set to True in most environments.

The priv field is a path to the private key. Alternatively, it can be agent-forwarding

to use SSH agent. This is often a good idea, since it presents an extra barrier to key

leakage.

The roster can go anywhere, but by default Salt will look for it in /etc/salt/roster.

Putting this file in a different location is subtle: salt-ssh will find its configuration, by

default, from /etc/salt/master. Since the usual reason to put the roster elsewhere is

to avoid touching the /etc/salt directory, that means we usually need to configure an

explicit master configuration file using the -c option.

Alternatively, a Saltfile can be used. salt-ssh will look to a Saltfile, in the

current directory, for options.

salt-ssh:

 config_dir: some/directory

If we put in the value . in config_dir, it will look in the current directory for a

master file. We can set the roster_file field in the master file to a local path (for

example, roster) to make sure the entire configuration is local and locally accessible.

This can help if things are being managed by a version control system.

After defining the roster, it is useful to start checking that the Salt system is

functioning.

The command

$ salt '∗' test.ping

will send all the machines on the roster (or, later on when we use minions, all connected

minions) a ping command. They are all supposed to return True. This command will fail

if machines are unreachable, if SSH credentials are wrong, or there are other common

configuration problems.

Chapter 10 Salt StaCk

124

Because this command does not have any effect on the remote machines, it is a good

idea to run it first before starting to perform any changes. This will make sure that the

system is correctly configured.

There are several other test functions, used for more sophisticated checks of

the system.

The test.false command will intentionally fail. This is useful to see what failures

look like. For example, when running Salt via a higher-level abstraction, such as a

continuous deployment system, this can be useful to see failures are visible (for example,

send appropriate notifications).

The test.collatz and test.fib functions perform heavy computations and return

the time it took as well as the result. This is used to test performance. For example, this

might be useful if machines dynamically tune CPU speed according to available power

or external temperature, and we want to test whether this is the cause of performance

problems.

On the salt command line, many things are parsed into Python objects. The

interaction of the shell-parsing rules and the salt-parsing rules can, at times, be hard to

predict. The test.kwarg command can be useful when checking how things are parsed.

It returns the value that the dictionary passed in as keyword arguments. For example,

$ salt '∗' test.kwarg word="hello" number=5
 simple_dict='{thing: 1, other_thing: 2}'

will return the dictionary

{'word': 'hello', 'number': 5,

 'simple_dict': {'thing': 1, 'other_thing': 2}}

Since the combination of the shell-parsing rules and the Salt-parsing rules can be, at

times, hard to predict, this is a useful command to be able to debug those combinations

and figure out what things are over- or under-quoted.

Instead of '∗' we can target a specific machine by logical name. This is often useful

when seeing a problem with a specific machine; it allows a quick feedback mechanism

when trying various fixes (for example, changing firewall settings or SSH private keys).

While testing that the connection works well is important, the reason to use Salt is to

actually control machines remotely. While the main usage of Salt is to synchronize to a

known state, Salt can also be used to run ad hoc commands.

$ salt '∗' cmd.run 'mkdir /src'

Chapter 10 Salt StaCk

125

This will cause all connected machines to create a directory /src. More sophisticated

commands are possible, and again it is possible to only target specific machines.

The technical term for the desired state in Salt is “highstate.” The name is a frequent

cause of confusion, because it seems to be the opposite of a “low state,” which is

described almost nowhere. The name “highstate,” however, stands for “high-level state”:

it describes the goal of state.

The “low” states, the low-level states, are the steps that Salt takes to get to the goal.

Since the compilation of the goal to the low-level states is done internally, nothing in the

user-facing documentation talks about a “low” state, thus leading to confusion.

The way to apply the desired state is the following:

$ salt '∗' state.highstate

Since there was so much confusion about the name “highstate,” in an attempt to

reduce the confusion, an alias was created:

$ salt '∗' state.apply

Again, both of these do the exact same thing: they figure out what the desired state is,

for all machines, and then issue commands to reach it.

The state is described in sls files. These files are, usually, in the YAML format and

describe the desired state.

The usual way to configure is one file top.sls that describes which other files apply

to which machines. The top.sls name is the name that salt will use by default as the

top-level file.

A simple homogenous environment might be:

top.sls

base:

 '∗':
 - core

 - monitoring

 - kubelet

This example would have all machines apply the configuration from core.sls

(presumably, making sure the basic packages are installed, the right users are

configured, etc.); from monitoring.sls (presumably, making sure that tools that

monitor the machine are installed and running); and kubelet.sls, defining how to

install and configure the kubelet.

Chapter 10 Salt StaCk

126

Indeed, much of the time Salt will be used to configure machines for workload

orchestration tools such as Kubernetes or Docker Swarm.

10.2 Salt Concepts
Salt introduces quite a bit of terminology and also quite a few concepts.

A minion is the Salt agent. Even in the “agentless” SSH-based communication, there

is still a minion; the first thing that Salt does is send over code for a minion, and then

start it.

A Salt master sends commands to minions.

A Salt state is a file with the .sls extension that contains state declarations:

name_of_state:

 state.identifier:

 - parameters

 - to

 - state

For example:

process_tools:

 pkg.installed:

 - pkgs:

 - procps

This will make sure the package procps (which includes the ps command among

others) will be installed.

Most Salt states are written to be idempotent: to have no effect if they are already in

effect. For example, if the package is already installed, Salt will do nothing.

Salt modules are different from Python modules. Internally, they do correspond to

modules but only some modules.

Unlike states, modules run things. This means that there is no guarantee, or even

attempt at, idempotence.

Often, a Salt state will wrap a module with some logic to decide whether it needs to

run the module: for example, before installing a package, pkg.installed will check if the

package is already installed.

Chapter 10 Salt StaCk

127

A pillar is a way of attaching parameters to specific minions, which can then be

reused by different states.

If a pillar filters out some minions, then these minions are guaranteed to never be

exposed to the values in the pillar. This means that pillars are ideal for storing secrets,

since they will not be sent to the wrong minions.

For better protection of secrets, it is possible to use gpg to encrypt secrets in pillars.

Since gpg is based on asymmetric encryption, it is possible to advertise the public key,

for example, in the same source control repository that holds the states and pillars.

This means anyone can add secrets to the configuration, but the private key is

needed, on the master, to apply those configurations.

Since GPG is flexible, it is possible to target the encryption to several keys. As a best

practice, it is best to load the keys into a gpg-agent. This means that when the master

needs the secrets, it will use gpg, which will communicate with the gpg-agent.

This means the private keys are never exposed to the Salt master directly.

In general, Salt processes directives in states in order. However, a state can always

specify require. When specifying dependencies, it is best to have the dependent state

have a custom, readable, name. This makes dependencies more readable.

Extract archive:

 archive.extracted:

 - name: /src/some-files

 - source: /src/some-files.tgz

 - archive_format: tar

 - require:

 - file: Copy archive

Copy archive:

 file.managed:

 - name: /src/some-files.tgz

 - source: salt://some-files.tgz

Having explicit readable names helped us make sure we depend on the right state.

Note that even though Extract precedes Copy, it will still wait for the Copy to be finished.

It is also possible to invert the relationship:

Extract archive:

 archive.extracted:

 - name: /src/some-files

Chapter 10 Salt StaCk

128

 - source: /src/some-files.tgz

 - archive_format: tar

Copy archive:

 file.managed:

 - name: /src/some-files.tgz

 - source: salt://some-files.tgz

 - require_in:

 - archive: Extract archive.

In general, much like in this example, inverting the relationship does not improve

things. However, this can be sometimes used to minimize or localize changes to files in a

shared repository.

There are other relationships possible, and all of them have the ability to be inverted;

onchanges specifies that the state should only be reapplied if another state has caused

actual changes, and onfail specifies that the state should only be reapplied if another

state application failed. This can be useful to set alerts or make sure that the system goes

back to a known state.

There are a few more esoteric relationships possible, like watch and prereq, which

are more specialized.

When using the built-in Salt communication, rather than the SSH method, minions

will generate keys. Those keys need to be accepted or rejected. One way to do so is to use

the salt-key command.

As we have mentioned earlier, one way of bootstrapping the trust is to use SSH. In

that case, use Salt to transfer over parsed output from running salt-key -F master to

the minion, and then set it in the minion’s configuration under the master_finger field.

Similarly, run remotely salt-call key.finger --local on the minion (for

example, with salt 'minion' cmd.run) and compare it to the pending key before

accepting. This can be automated, and leads to a verified chain.

There are other ways to bootstrap the trust, depending on what primitives are

available. If, for example, hardware key management (HKM) devices are available, they

can be used to sign the minions’ and the master’s keys.

Trusted Platform Modules (TPM) can also be used to mutually assure trust. Both of

these mechanisms are beyond our current scope.

Grains (as in, “a grain of salt”) parameterize a system. They differ from pillars in

that the minion decides on the grain; that configuration is stored and modified on the

minions.

Chapter 10 Salt StaCk

129

Some grains, such as fqdn, are auto-detected on the minions. It is also possible to

define other grains in the minion configuration file.

It is possible to push grains from the master. It is also possible to grab grains from

other sources when bootstrapping the minion. For example, on AWS, it is possible to set

the UserData as a grain.

Salt environments are directory hierarchies that each define a separate topfile.

Minions can be assigned to an environment, or an environment can be selected when

applying the highstate using salt '∗' state.highstate saltenv=....

The Salt file_roots are a list of directories that function like a path; when looking

for a file, Salt will search in them in order, until it finds it. They can be configured on a

per-environment basis and are the primary thing distinguishing environments.

10.3 Salt Formats
So far, our example SLS files were YAML files. However, Salt interprets YAML files as Jinja

templates of YAML files. This is useful when we want to customize fields based on grains

or pillars.

For example, the name of the package containing the things we need to build Python

packages is different between CentOS and Debian.

The following SLS snippet shows how to target different packages to different

machines in a heterogenous environment.

{% if grains['os'] == 'CentOs' %}

python-devel:

{% elif grains['os'] == 'Debian' %}

python-dev:

{% endif %}

 pkg:

 - installed

It is important to notice that the Jinja processing step is completely ignorant of the

YAML formatting. It treats the file as plain text, does the formatting, and then Salt uses

the YAML parser on the result.

This means that it is possible for Jinja to make an invalid file only in some cases.

Indeed, we embedded such a bug in the example above; if the OS is neither CentOS or

Debian, the result would be an incorrectly indented YAML file, which will fail to parse in

strange ways.

Chapter 10 Salt StaCk

130

In order to fix it, we would like to raise an explicit exception:

{% if grains['os'] == 'CentOs' %}

python-devel:

{% elif grains['os'] == 'Debian' %}

python-dev:

{% else %}

{{ raise('Unrecognized operating system', grains['os']) }}

{% endif %}

 pkg:

 - installed

This raises an exception at the right point, in case a machine is added into our roster

that is not one of the supported distributions, instead of Salt complaining about a parse

error in YAML.

Such care is important whenever doing something nontrivial with Jinja, because the

two layers, the Jinja interpolation and the YAML parsing, are not aware of each other.

Jinja does not know it is supposed to produce YAML, and the YAML parser does not

know what the Jinja source looked like.

Jinja supports filtering in order to process values. Some filters are built in to Jinja, but

Salt extends it with a custom list.

Among the interesting filters is YAML_ENCODE. Sometimes we need to have a value in

our .sls file that is YAML itself: for example, the content of a YAML configuration file

that we need copied over.

Embedding YAML in YAML is often unpleasant; special care must be given to proper

escaping. With YAML_ENCODE, it is possible to encode values written in the native YAML.

For a similar reason, JSON_ENCODE_DICT and JSON_ENCODE_LIST are useful for

systems that take JSON as input.

The list of custom filters is long, and this is one of the frequent things that changes

from release to release. The canonical documentation will be on the Salt documentation

site, docs.saltstack.com, under “Jinja -> Filters.”

Though until now we referred to SLS files as files that are processed by Jinja and then

YAML, this is inaccurate. This is the default processing, but it is possible to override the

processing with a special instruction.

Salt, itself, only cares that the final result is a YAML-like (or, equivalently in our case,

JSON-like) data structure: a dictionary containing recursively dictionaries, lists, strings,

and numbers.

Chapter 10 Salt StaCk

131

The process of converting the text into such a data structure is called “rendering” in

Salt parlance. This is opposed to common usage, where rendering means transforming

to text and parsing means transforming from text, so it is important to note when reading

Salt documentation.

A thing that can do rendering is a renderer. It is possible to write a custom renderer,

but among the built-in renderers, the most interesting one is the py renderer.

We indicate that a file should be parsed with the py renderer with #!py at the top.

In that case, the file is interpreted as a Python file. Salt looks for a function run, runs

it, and treats the return value as the state.

When running, __grains__ and __pillar__ contain the grain and pillar data.

As an example, we can implement the same logic with a py renderer.

#!py

def run():

 if __grains__['os'] == 'CentOS':

 package_name = 'python-devel'

 elif __grains__['os'] == 'Debian':

 package_name = 'python-dev'

 else:

 raise ValueError("Unrecognized operating system",

 __grains__['os'])

return { package_name: dict(pkg='installed') }

Since the py renderer is not a combination of two unrelated parsers, mistakes

end up being sometimes easier to diagnose. If we reintroduce the bug from the first

version, we get:

#!py

def run():

 if __grains__['os'] == 'CentOS':

 package_name = 'python-devel'

 elif __grains__['os'] == 'Debian':

 package_name = 'python-dev'

return { package_name: dict(pkg='installed') }

In this case, the result will be a NameError pinpointing the erroneous line and the

missing name.

Chapter 10 Salt StaCk

132

The trade-off is that if the configuration is big, and mostly static, reading it in YAML

form is more straightforward.

10.4 Salt Extensions
Since Salt is written in Python, it is fully extensible in Python. In general, the easiest way

to extend Salt for new kinds of things is to put files in the file_roots directory on the

Salt master. Unfortunately, there is no package manager for Salt extensions yet. Those

files automatically get synchronized to the minions, either when running state.apply

or when explicitly running saltutil.sync_state. The latter is useful if we want to test,

for example, a dry run of the state without causing any changes, but with the modified

modules.

10.4.1 States
State modules go under the root directory for the environment. If we want to share State

modules between environments, it is possible to make a custom root and share that root

between the right environments.

The following is an example of a module that ensures there are no files that have the

name “mean” in them under a specific directory. It is probably not very useful, although

in general, making sure that unneeded files are not there could be important. For

example, we might want to enforce no .git directories.

def enforce_no_mean_files(name):

 mean_files = __salt__['files.find'](name, path="∗mean∗")
 # ...continues below...

The name of the function maps to the name of the state in the SLS state file.

If we put this code in mean.py, the appropriate way to address this state would be

mean.enforce_no_mean_files.

The right way to find files, or indeed, to do anything in a Salt state extension, is to call

Salt executors. In most non-toy examples, this will mean writing a matching pair: a Salt

executor extension and a Salt state extension.

Chapter 10 Salt StaCk

133

Since we want to progress one thing at a time, we are using a prewritten Salt

executor: the file module, which has the find function.

def enforce_no_mean_files(name):

 # ...continued...

 if mean_files = []:

 return dict(

 name=name,

 result=True,

 comment='No mean files detected',

 changes=[],

)

 # ...continues below...

One of the things the state module is responsible for, and indeed often the most

important thing, is doing nothing if the state is already achieved. This is what being

a convergence loop is all about: optimizing for the case of having already achieved

convergence.

def enforce_no_mean_files(name):

 # ...continued...

 changes = dict(

 old=mean_files,

 new=[],

)

 # ...continues below...

We now know what the changes are going to be. Calculating it here means we can

guarantee consistency between the responses in the test vs. non-test mode.

def enforce_no_mean_files(name):

 # ...continued...

 changes = dict(

 if __opts__['test']:

 return dict(

 name=name,

 result=None,

Chapter 10 Salt StaCk

134

 comment=f"The state of {name} will be changed",

 changes=changes,

)

 # ...continues below...

The next important responsibility is to support the test mode. It is considered a best

practice to always test before applying a state. We want to clearly articulate the changes

that this module will make if activated.

def enforce_no_mean_files(name):

 # ...continued...

 changes = dict(

 for fname in mean_files:

 __salt__['file.remove'](fname)

 # ...continues below...

In general, we should only be calling one function: the one from the execution

module that matches the state module. Since in this example we are using file as our

execution module, we call the remove function in a loop.

def enforce_no_mean_files(name):

 # ...continued...

 changes = dict(

 return dict(

 name=name,

 changes=changes,

 result=True,

 comment=f"The state of {name} was changed",

)

 # ...continues below...

Finally, we return a dictionary that has the same changes as the ones documented in

the test mode, but with a comment indicating that these have already run.

This is the typical structure of a state module: one (or more) functions, which accept

a name (and possibly more arguments) and then return a result. The structures of

“check if changes are needed,” “check if we are in test mode,” and then “actually perform

changes” are also typical.

Chapter 10 Salt StaCk

135

10.4.2 Execution
For historical reasons, execution modules go in the file root’s _modules subdirectory.

Similarly to execution modules, they are also synchronized when state.highstate is

applied, as well as when explicitly synchronized via saltutil.sync_all.

As an example, we write an execution module to delete several files, in order to

simplify our state module above.

def multiremove(files):

 for fname in files:

 __salt__['file.remove'](fname)

Note that __salt__ is usable in execution modules as well. However, while it can

cross-call other execution modules (in this example, file) it cannot cross-call into state

modules.

We put this code in _modules/multifile, and we can change our state module to

have:

__salt__['multifile.mutiremove'](mean_files)

instead of

for fname in mean_files:

 __salt__['file.remove'](fname)

Execution modules are often simpler than state modules, as in this example. In this

toy example, the execution module barely does anything at all, just coordinating calls to

other execution modules.

This is not completely atypical, however. Salt has so much logic for managing

machines that often all an execution module has to do is just to coordinate calls to other

execution modules.

10.4.3 Utility
When writing several execution or state modules, it sometimes is the case that there is

some common code that can be factored out.

This code can sit in so-called “utility modules.” Utility modules sit under the file

root’s _utils directory and will be available as the __utils__ dictionary.

Chapter 10 Salt StaCk

136

As an example, we can factor out the calculation of the return value in the

state module:

def return_value(name, old_files):

 if len(old_files) == 0:

 comment = "No changes made"

 result = True

 elif __opts__['test']:

 comment = f"{name} will be changed"

 result = None

 else:

 comment = f"{name} has been changed"

 result = True

 changes = dict(old=old_files, new=[])

 return dict(

 name=name,

 comment=comment,

 result=result,

 changes=changes,

)

If we use the execution module and the utility modules, we get a simpler

state module:

def enforce_no_mean_files(name):

 mean_files = __salt__['files.find'](name, path="∗mean∗")
 if len(mean_files) == 0 or __opts__['test']:

 return __utils__['removal.return_value'](name, mean_files)

 __salt__['multifile.mutiremove'](mean_files)

 return __utils__['removal.return_value'](name, mean_files)

In this case, we could have put the function as a regular function in the module;

putting it in a utility module was used to show how to call functions in utility modules.

Chapter 10 Salt StaCk

137

10.4.4 Extra Third-Party Dependencies
Sometimes it is useful to have third-party dependencies, especially when writing new

state and execution modules. This is straightforward to do when installing a minion;

we just make sure to install the minion in a virtual environment with those third-party

dependencies.

When using Salt with SSH, this is significantly less trivial. In that case, it is sometimes

best to bootstrap from SSH to a real minion. One way to achieve that is to have a

persistent state in the SSH “minion” directory, and have the installation of the minion set

a grain of “completely_disable” in the SSH minion. This would make sure that the SSH

configuration does not cross-talk with the regular minion configuration.

10.5 Summary
Salt is a Python-based configuration management system. For nontrivial configurations,

it is possible to express the desired system configuration using Python, which can

sometimes be more efficient than templating YAML files. It is also possible to extend it

with Python in order to define new primitives.

Chapter 10 Salt StaCk

139
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_11

CHAPTER 11

Ansible
Like Salt, Ansible is another configuration management system. However, Ansible does

not have a custom agent: it always works with SSH. Unlike the way Salt works with

SSH, where it spins up an ad hoc minion and sends it commands, Ansible calculates

the commands on the server and sends simple commands and files through the SSH

connection.

By default, Ansible will try to use the local SSH command as the control machine.

If the local command is unsuitable for any reason, Ansible will fall back to using the

Paramiko library.

11.1 Ansible Basics
Ansible can be installed using pip install ansible in a virtual environment. After

installing it, the simplest thing is to ping the localhost:

$ ansible localhost -m ping

This is useful, since if this works it means quite a few things are configured

correctly: running the SSH command, configuring the SSH keys, and the SSH host keys.

In general, the best way to use Ansible, as always when using SSH communication, is

with a locally-encrypted private key that is loaded into an SSH agent. Since ansible, by

default, will use the local SSH command, if ssh localhost works the right way (without

asking for a password), then Ansible will work correctly. If localhost is not running an

SSH daemon, replace the examples below with a separate Linux host: possibly one

running as a virtual machine locally.

Slightly more sophisticated, but still not requiring a complicated setup, is running a

specific command:

$ ansible localhost -a "/bin/echo hello world"

140

We can also give an explicit address:

$ ansible 10.40.32.195 -m ping

will try to SSH to 10.40.42.195.

The set of hosts Ansible will try to access by default is called the “inventory.” The

inventory can either be specified statically in an INI or YAML files. However, the more

common option is to write an “inventory script,” which generates the list of machines.

An inventory script is simply a Python file that can be run with the arguments --list and

–host <hostname>. Ansible will use, by default, the same Python used to run it in order to

run the inventory script. It is possible to make the inventory script a “real script” running with

any interpreter, like a different version of Python, by adding a shebang line. Traditionally, the

file is not named with .py. Among other things, this avoids accidental imports of the file.

When run with --list, it is supposed to output the inventory as formatted

JSON. When run with --host, it is supposed to print the variables for the host. In general,

it is perfectly acceptable to always print an empty dictionary in these circumstances.

Here is a simple inventory script:

import sys

if '--host' in sys.argv[1:]:

 print(json.dumps({}))

print(json.dumps(dict(all='localhost')))

This inventory script is not very dynamic; it will always print the same thing.

However, it is a valid inventory script.

We can use it with

$ ansible -i simple.inv all -m ping

This will again ping (using SSH) the localhost.

Ansible is not primarily used to run ad hoc commands against hosts. It is designed to

run “playbooks.” Playbooks are YAML files that describe “tasks.”

- hosts: all

 tasks:

 - name: hello printer

 shell: echo "hello world"

Chapter 11 ansible

141

This playbook will run echo "hello world" on all connected hosts.

In order to run it, with the inventory script we created,

$ ansible-playbook -i simple.inv echo.yml

In general, this will be the most common command to use when running Ansible

day to day. Other commands are mostly used as debugging and troubleshooting, but in

normal circumstances, the flow is to rerun the playbook “a lot.”

By “a lot,” we mean that, in general, playbooks should be written to be safely

idempotent; executing the same playbook in the same circumstances again should not

have any effect. Note that in Ansible, idempotency is a property of the playbook, not of

the basic building blocks.

For example, the following playbook is not idempotent:

- hosts: all

 tasks:

 - name: hello printer

 shell: echo "hello world" >> /etc/hello

One way to make it idempotent is to make it notice the file is already there:

- hosts: all

 tasks:

 - name: hello printer

 shell: echo "hello world" >> /etc/hello

 creates: /etc/hello

This will notice the file exists and will skip the command if so.

In general, in more complex settings, instead of listing tasks in the playbooks, these

will be delegated to roles.

Roles are a way of separating concerns and flexibly combining them per host.

- hosts: all

 roles:

 - common

Chapter 11 ansible

142

Then, under roles/common/tasks/main.yml

- hosts: all

 tasks:

 - name: hello printer

 shell: echo "hello world" >> /etc/hello

 creates: /etc/hello

This will do the same thing as above, but now it is indirected through more files. The

benefit is that if we have many different hosts, and we need to combine instructions for

some of them, this is a convenient platform to define parts of more complicated setups.

11.2 Ansible Concepts
When Ansible needs to use secrets, it has its internal “vault.” The vault has encrypted

secrets and is decrypted with a password. Sometimes this password will be in a file

(ideally on an encrypted volume).

Ansible roles and playbooks are jinja2 YAML files. This means they can use

interpolation, and they support a number of Jinja2 filters.

Some useful ones are from/to_json/yaml, which allow data to be parsed and

serialized back and forth. The map filter is a meta-filter that applies a filter item by item to

an iterable object.

Inside the filters, there is a set of variables defined. Variables can come from

multiple sources: the Vault (for secrets), directly in the playbook or role, or in files

included from it. Variables can also come from the inventory (which can be useful if

different inventories are used with the same playbook). The ansible_facts variable is a

dictionary that has the facts about the current host: operating system, IP, and more.

They can also be defined directly on the command line. While this is dangerous, it

can be useful for quick iterations.

In playbooks, it is often the case that we will need to define both which user to log in

as, as well as which user (usually root) to execute tasks as.

All of those can be configured on a playbook and overridden on a per-task level.

The user that we log in as is remote_user. The user that we execute as is either

remote_user if become is False, or become_user if become is True. If become is True, the

user switching will be done by become_method.

Chapter 11 ansible

143

The defaults are:

• remote_user – same as local user

• become_user – root

• become – False

• become_method – sudo

These defaults are usually correct, except for become, which often needs to be

overridden to True. In general, it is best to configure machines so that, whatever

we chose the become_method to be, the process of user switching does not require

passwords.

For example, the following will work on common cloud-providers’ versions of

Ubuntu:

- hosts: databases

 remote_user: ubuntu

 become: True

 tasks:

 - name: ensure that postgresql is started

 service:

 name: postgresql

 state: started

If this is impossible, we need to give the argument --ask-become-pass to have

Ansible ask for the credentials at runtime. Note that while this works, this will hamper

automation attempts, and it is best to avoid it.

Ansible supports “patterns” to indicate which hosts to update. In ansible-playbook,

this is done with --limit. It is possible to do set arithmetic on groups: : means “union,”

:! means “set difference,” and :& means “intersection.” In that case, the basic sets are the

sets as defined in the inventory. For example, databases:!mysql will limit the command

to only databases hosts that are not mysql.

Patterns can be regular expressions that match hosts’ names or IPs.

Chapter 11 ansible

144

11.3 Ansible Extensions
We have seen one way to extend ansible using custom Python code: dynamic inventory.

In the dynamic inventory example, we wrote an ad hoc script. The script, however,

was run as a separate process. A better way to extend Ansible, and one that generalizes

beyond inventory, is to use plugins.

An inventory plugin is a Python file. There are several places for this file so that

Ansible can find it: often the easiest is plugins/inventory_plugins in the same

directory as the playbook and roles.

This file should define a class called InventoryModule that inherits from

BaseInventoryPlugin. The class should define two methods: verify_file and parse.

The verify_file function is mostly an optimization; it is meant to quickly skip the

parsing if the file is not the right one for the plugin. It is an optimization since parse

can (and should) raise AnsibleParserError if the file cannot be parsed for any reason.

Ansible will then try the other inventory plugins.

The parse function signature is

def parse(self, inventory, loader, path, cache=True):

 pass

A simple example parsing JSON:

def parse(self, inventory, loader, path, cache=True):

 super(InventoryModule, self).parse(inventory, loader, path, cache)

 try:

 with open(path) as fpin:

 data = json.loads(fpin.read())

 except ValueError as exc:

 raise AnsibleParseError(exc)

 for host in data:

 self.inventory.add_host(server['name'])

The inventory object is how to manage the inventory; it has methods for add_group;

add_child; and set_variable, which is how the inventory is extended.

The loader is a flexible loader that can guess a file’s format and load it. The path is

the path to the file that has the plugin parameters. Notice that in some cases, if the plugin

is specific enough, the parameters and the loader might not be needed.

Chapter 11 ansible

145

The other common plugin to write is a “lookup” plugin. Lookup plugins can be

called from the Jinja2 templates in Ansible, in order to do arbitrary computation. This is

often a good alternative when templates start getting a little too complicated. Jinja2 does

not scale well to complex algorithm, or to call into third-party libraries easily.

Lookup plugins are sometimes used for complex computation, and sometimes for

calling into a library to allow computing a parameter in a role. For example, it can take

the name of an environment and calculate (based on local conventions) what are the

related objects.

class LookupModule(LookupBase):

 def run(self, terms, variables=None, ∗∗kwargs):
 pass

For example, we can write a lookup plugin that calculates the largest common path

of several paths:

class LookupModule(LookupBase):

 def run(self, terms, variables=None, ∗∗kwargs):
 return os.path.commonpath(terms)

Note that when using lookup modules, both lookup and query can be used from

Jinja2. By default, lookup will convert the return value into a string. The parameter

wantslist can be sent to avoid a conversion if the return value is a list. Even in that case,

it is important to only return a “simple” object: something composed only of integers,

floats and strings, or lists and dictionaries thereof. Custom classes will be coerced into

strings, in various surprising ways.

11.4 Summary
Ansible is a simple configuration management that is easy to set up, requiring just SSH

access. Writing new inventory plugins and lookup plugins allows implementing custom

processing with little overhead.

Chapter 11 ansible

147
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_12

CHAPTER 12

Docker
Docker is a system for application-level virtualization. While different Docker containers

share a kernel, they will usually share little else: files, processes, and more can all be

separate. It is commonly used for both testing software systems and running them in

production.

There are two main ways to automate Docker. It is possible to use the subprocess

library and use the docker command line. This is a popular way and does have some

advantages.

However, an alternative is to use the dockerpy library. This allows doing some things

that are completely impossible with the docker command, as well as some things that

are merely impossible or annoying with the command.

One of the advantages is installation; getting DockerPy installed is just pip install

docker in a virtual environment, or any of the other ways to install Python packages.

Installing the Docker binary client is often more involved. While it does come when

installing the Docker daemon, it is not uncommon to need just a client, while the server

runs on a different host.

When using the docker Python package, the usual way is to connect using

import docker

client = docker.from_env()

This will, by default, connect to the local Docker daemon. However, in an

environment that has been prepared using docker-machine env, for example, it will

connect to the relevant remote Docker daemon.

In general, from_env will use an algorithm that is compatible with the one the docker

command-line client uses, and so is often useful in a drop-in replacement.

For example, this is useful in Continuous Integration environments that allocate a

Docker host per CI session. Since they will set up the local environment to be compatible

with the docker command, from_env will do the right thing.

148

It is also possible to connect directly using the host’s details. The DockerClient

constructor will do that.

12.1 Image Building
The client’s images attribute’s build method accepts a few arguments that allow

doing things that are hard from the command line. The method accepts only keyword

arguments. There are no required arguments, also at least one of path and fileobj must

be passed in.

The fileobj parameter can point to a file-like object that is a tarball (or a gzipped

tarball, in which case the encoding parameter needs to be set to gzip). This will end up

being the build context, and the dockerfile parameter will be taken to mean a path

inside the context. This allows creating the build context explicitly.

With the usual docker build command, the context is the contents of a directory,

further going through an include/exclude with a .dockerignore file. Generating the

tarball in memory using BytesIO and the tarfile library means the contents can be

explicit. Note that this means that Python can also generate the Dockerfile in memory.

This way, there is no need to create external files; the entire build system is specified

in Python and passed directly to Docker.

For example, here is a simple program to create a Docker image that has nothing

except a file /hello with a simple greeting:

fpout = io.BytesIO()

tfout = tarfile.open(fpout, "w|")

info = tarfile.TarInfo(name="Dockerfile")

dockerfile = io.Bytes("FROM scratch\nCOPY hello /hello".encode("ascii"))

tfout.addfile(tarinfo=info, fileobj=dockerfile)

hello = io.Bytes("This is a file saying 'hello'".encode("ascii"))

info = tarfile.TarInfo(name="hello")

tfout.addfile(tarinfo=info, fileobj=hello)

fpout.seek(0)

client.build(fileobj=fpout, tag="hello")

Note that this image is naturally not very useful. We cannot create a running

container from it, since it has no executables. However, this simple example does show

we can create a Docker image without having any external files.

Chapter 12 DoCker

149

This can come in handy, for example, when creating an image from wheels; we can

download the wheels into in-memory buffers, create the container, tag it, and push it, all

without needing any temporary files.

12.2 Running
The containers attribute on the client allows managing running containers.

The containers.run() method will run a container. The arguments are much the

same as the docker run command line, but there are some differences in the best way to

use them.

It is almost always a good idea, from Python, to use the detach=True option. This

will cause run() to return a Container object. If you need to wait until it exits, for some

reason, call .wait, explicitly, on the container object.

This allows timeouts, which are useful for killing runaway processes. The return

value of the container object also allows retrieving the logs, or inspecting the list of

processes inside the container.

The containers.create method will create a container, but not run it, like docker

create.

Regardless of whether a container is running or not, it is possible to interact with

its file system. The get_archive method will retrieve a file or recursively a directory

from the container. It will return a tuple. The first element is an iterator that yields raw

bytes objects. Those can be parsed as a tar archive. The second element is a dictionary

containing metadata about the file or the directory.

The put_archive command injects files into the container. This is sometimes

useful between create and start to fine-tune the container: for example, injecting a

configuration file for a server.

It is even possible to use this as an alternative to the build command; a combination

of container.put_archive and container.commit with containers.run and

containers.create allows building containers incrementally, without a Dockerfile. One

advantage of this approach is that the layer division is orthogonal to the number of steps:

you can have several logical steps be the same layer.

Note, however, that deciding which “layers” to cache becomes our responsibility, in

this case. Also, in this case, the “intermediate layers” are fully fledged images. This has its

advantages: for example, cleaning up becomes more straightforward.

Chapter 12 DoCker

150

12.3 Image Management
The client’s images attribute allows manipulating the container images. The list

method on the attribute returns a list of images. These are image objects, not just names.

An image can be retagged with the method tag. This allows, for example, tagging a

specific image as the :latest.

The pull() and push() methods correspond to the docker client pull and push. The

remove() command allows removing images. Note that the argument is a name, not an

Image object.

For example, here is a simple example that will retag the latest image as latest:

images = client.list(name="myusername/myrepo")

sofar = None

for image in images:

 maxtag = max(tag for tag in image.tags if tag.startswith("date-"))

 if sofar is None or maxtag > sofar:

 sofar = maxtag

 latest = image

latest.tag("myusername/myrepo", tag="latest")

client.push("myusername/myrepo", tag="latest")

12.4 Summary
Using the dockerpy is a powerful alternative for the Docker client when automating

Docker. It allows us to use the full power of Python, including string manipulation and

buffer manipulation, to build a container image, run a container, and manage running

containers.

Chapter 12 DoCker

151
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3_13

CHAPTER 13

Amazon Web Services
Amazon Web Services, AWS, is a cloud platform. It allows using computation and

storage resources in a data center, paying by usage. One of the central principles of

AWS is that all interactions with it should be possible via an API: the web console,

where computation resources can be manipulated, is just another front end to the API.

This allows automating configuration of the infrastructure: so-called “infrastructure

as code,” where the computing infrastructure is reserved and manipulated

programmatically.

The Amazon Web Services team supports a package on PyPI, boto3, to automate

AWS operations. In general, this is one of the best ways to interact with AWS.

While AWS does support a console UI, it is usually best to use that as a read-only

window into AWS services. When making changes through the console UI, there is

no repeatable record of it. While it is possible to log actions, this does not help to

reproduce them.

Combining boto3 with Jupyter, as we have discussed in an early chapter, makes for

a powerful AWS operations console. Actions taken through Jupyter, using the boto3 API,

can be repeated, automated, and parameterized as needed.

When making ad hoc changes to the AWS setup to solve a problem, it is possible to

attach the notebook to the ticket tracking the problems, so that there is a clear record of

what was done to address the problem. This serves both to understand what was done

in case this caused some unforeseen issues, and to easily repeat this intervention in case

this solution is needed again.

As always, notebooks are not an auditing solution; for one, when allowing access via

boto3, actions do not have to be performed via a notebook. AWS has internal ways to

generate audit logs. The notebooks are there to document intent and allow repeatability.

152

13.1 Security
For automated operations, AWS requires access keys. Access keys can be configured for

the root account, but this is not a good idea. There are no restrictions possible on the

root account, so this means that these access keys can do everything.

The AWS platform for roles and permissions is called “Identity and Access

Management,” or IAM. The IAM service is responsible for users, roles, and policies.

In general, it is better to have a separate IAM user for each human user, as well as

for each automated task that needs to be taken. Even if they all share an access policy,

having distinct users means it is easier to do key management, as well as having accurate

audit logs of who (or what) did what.

13.1.1 Configuring Access Keys
With the right security policy, users can be in charge of their own access keys. A single

“access key” is composed of the access key ID and the access key secret. The ID does

not need to be kept secret, and it will remain accessible via IAM user interface after

generation. This allows, for example, disabling or deleting an access key by ID.

A user can configure up to two access keys. Having two keys allows doing

0-downtime key rotations. The first step is to generate a new key. Then replace the old

key everywhere. Afterwards, disable the old key. Disabling the old key will make anything

that tries to use it fail. If such a failure is detected, it is easy to re-enable the old key, until

the task using that key can be upgraded to the new key.

After a certain amount of time, when no failures have been observed, it should be

safe to delete the old key.

In general, local security policies determine how often keys should be rotated, but

this should usually be at least a yearly ritual. In general, this should follow practices for

other API secrets used in the organization.

Note that in AWS, different computation tasks can have their own IAM credentials.

For example, an EC2 machine can be assigned an IAM role. Other higher-level

computation tasks can also be assigned a role. For example, an Elastic Container Service

(ECS) task, which runs one or more Docker containers, can be assigned an IAM role.

So-called “serverless” Lambda functions, which run on infrastructure allocated on an

as- needed basis, can also be assigned an IAM role.

The boto3 client will automatically use these credentials if running from such a task.

This removes the need to explicitly manage credentials, and it is often a safer alternative.

Chapter 13 amazon Web ServiCeS

153

13.1.2 Creating Short-Term Tokens
AWS supports something called “Short-Term Tokens” or STS. Short-term tokens can be

used for several things. They can be used to convert alternative authentication methods

into tokens that can be used with any boto3-based program, for example, by putting

them in an environment variable.

For example, in an account that has been configured with SSO-based authentication

based on SAML, boto3.client('sts').assume_role_with_saml can be called to

generate a short-term security token. This can be used in boto3.Session in order to get a

session that has those permissions.

import boto3

response = boto3.client('sts').assume_role_with_saml(

 RoleArn=role_arn,

 PrincipalArn=principle_arn,

 SAMLAssertion=saml_assertion,

 DurationSeconds=120

)

credentials = response['Credentials']

session = boto3.Session(

 aws_access_key_id=credentials['AccessKeyId'],

 aws_secret_access_key=credentials['SecretAccessKey'],

 aws_session_token=credentials['SessionToken'],

)

print(session.client('ec2').describe_instances())

A more realistic use case would be in a custom web portal that is authenticated to an

SSO portal. It can perform actions on behalf of the user, without itself having any special

access privileges to AWS.

On an account that has been configured with cross-account access, assume_token

can return credentials for the granting account.

Even when using a single account, sometimes it is useful to create a short-term

token. For example, this can be used to limit permissions; it is possible to create an STS

with a limited security policy. Using those limiting tokens in a piece of code that is more

prone to vulnerabilities, for example, because of direct user interactions, allows limiting

the attack surface.

Chapter 13 amazon Web ServiCeS

154

13.2 Elastic Computing Cloud (EC2)
The Elastic Computing Cloud (EC2) is the most basic way to access compute (CPU and

memory) resources in AWS. EC2 runs “machines” of various types. Most of those are

“virtual machines” (VMs) that run, together with other VMs, on physical hosts. The AWS

infrastructure takes care of dividing resources between the VMs in a fair way.

The EC2 service also handles the resources that machines need to work properly:

operating system images, attached storage, and networking configuration, among others.

13.2.1 Regions
EC2 machines run in “regions.” Regions usually have a human-friendly name (such as

“Oregon”) and an identifier that is used for programs (such as “us-west-2”).

There are several regions in the United States: at time of writing, North Virginia (“us-

east- 1”), Ohio (“us-east-2”), North California (“us-west-1”), and Oregon (“us-west-2”).

There are also several regions in Europe, Asia Pacific, and more.

When we connect to AWS, we connect to the region we need to manipulate: boto3.

client("ec2", region_name="us-west-2") returns a client that connects to the Oregon

AWS data center.

It is possible to specify default regions in environment variables and configuration

files, but it is often the best options to be explicit in code (or retrieve it from higher-level

application configuration data).

EC2 machines also run in an availability zone. Note that while regions are “objective”

(every customer sees the region the same), availability zones are not: one customer’s

“us-west-2a” might be another’s “us-west-2c.”

Amazon puts all EC2 machines into some Virtual Private Cloud (VPC) private

network. For simple cases, an account will have one VPC per region, and all EC2

machines belonging to that account will be in that VPC.

A subnet is how a VPC intersects with an availability zone. All machines in a subnet

belong to the same zone. A VPC can have one or more security groups. Security groups

can have various firewall rules set up about what network connections are allowed.

Chapter 13 amazon Web ServiCeS

155

13.2.2 Amazon Machine Images
In order to start an EC2 machine, we need an “operating system image.” While it is

possible to build custom Amazon Machine Images (AMIs), it is often the case we can use

a ready-made one.

There are AMIs for all major Linux distributions. The AMI ID for the right

distribution depends on the AWS region in which we want to run the machine. Once we

have decided on the region and on the distribution version, we need to find the AMI ID.

The ID can sometimes be nontrivial to find. If you have the product code, for

example, aw0evgkw8e5c1q413zgy5pjce, we can use describe_images.

client = boto3.client(region_name='us-west-2')

description = client.describe_images(Filters=[{

 'Name': 'product-code',

 'Values': ['aw0evgkw8e5c1q413zgy5pjce']

}])

print(description)

The CentOS wiki contains product codes for all relevant CentOS versions.

AMI IDs for Debian images can be found on the Debian wiki. The Ubuntu website

has a tool to find the AMI IDs for various Ubuntu images, based on region and version.

Unfortunately, there is no centralized automated registry. It is possible to search for

AMIs with the UI, but this is risky; the best way to guarantee the authenticity of the AMI

is to look at the creator’s website.

13.2.3 SSH Keys
For ad hoc administration and troubleshooting, it is useful to be able to SSH into the EC2

machine. This might be for manual SSH, using Paramiko, Ansible, or bootstrapping Salt.

Best practices for building AMIs that are followed by all major distributions for their

default images use cloud-init to initialize the machine. One of the things cloud-init

will do is allow a preconfigured user to log in via an SSH public key that is retrieved from

the so-called “user data” of the machine.

Public SSH keys are stored by region and account. There are two ways to add an SSH

key: letting AWS generate a key pair, and retrieving the private key, or generating a key

pair ourselves and pushing the public key to AWS.

Chapter 13 amazon Web ServiCeS

156

The first way is done with the following:

key = boto3.client("ec2").create_key_pair(KeyName="high-security")

fname = os.path.expanduser("~/.ssh/high-security")

with open(fname, "w") as fpout:

 os.chmod(fname, 0o600)

 fpout.write(key["KeyMaterial"])

Note that they keys are ASCII encoded, so using string (rather than byte) functions

is safe.

Note that it is a good idea to change the file’s permissions before putting in sensitive

data. We also store it in a directory that tends to have conservative access permissions.

If we want to import a public key to AWS, we can do it with this:

fname = os.path.expanduser("~/.ssh/id_rsa.pub")

with open(fname, "rb") as fpin:

 pubkey = fpin.read()

encoded = base64.encodebytes(pubkey)

key = boto3.client("ec2").import_key_pair(

 KeyName="high-security",

 PublicKeyMaterial=encoded,

)

As explained in the cryptography chapter, having the private key on as few machines

as possible is best.

In general, this is a better way. If we generate keys locally and encrypt them, there are

fewer places where an unencrypted private key can leak from.

13.2.4 Bringing Up Machines
The run_instances method on the EC2 client can start new instances.

client = boto3.client("ec2")

client.run_instances(

 ImageId='ami-d2c924b2',

 MinCount=1,

 MaxCount=1,

Chapter 13 amazon Web ServiCeS

157

 InstanceType='t2.micro',

 KeyName=ssh_key_name,

 SecurityGroupIds=['sg-03eb2567']

)

The API is a little counterintuitive – in almost all cases, both MinCount and MaxCount

need to be 1. For running several identical machines, it is much better to use an

AutoScaling Group (ASG), which is beyond the scope of the current chapter. In general,

it is worth remembering that as AWS’s first service, EC2 has the oldest API, with the least

lessons learned on designing good cloud automation APIs.

While in general the API allows running more than one instance, this is not often

done. The SecurityGroupIds imply which VPC the machine is in. When running a

machine from the AWS console, a fairly liberal security group is automatically created.

For debugging purposes, using this security group is a useful shortcut, although in

general it is better to create custom security groups.

The AMI chosen here is a CentOS AMI. While KeyName is not mandatory, it is highly

recommended to create a key pair, or import one, and use the name.

The InstanceType indicates the amounts of computation resources allocated to

the instance. t2.micro is, as the name implies, is a fairly minimal machine. It is useful

mainly for prototyping but usually cannot support all but the most minimal production

workloads.

13.2.5 Securely Logging In
When logging in via SSH, it is a good idea to know beforehand what is the public key

we expect. Otherwise, an intermediary can hijack the connection. Especially in cloud

environments, the “Trust-on-First-Use” approach is problematic; there are a lot of “first

uses” whenever we create a new machine. Since VMs are best treated as disposable, the

TOFU principle is of little help.

The main technique in retrieving the key is to realize that the key is written to the

“console” as the instance boots up. AWS has a way for us to retrieve the console output:

client = boto3.client('ec2')

output = client.get_console_output(InstanceId=sys.argv[1])

result = output['Output']

Chapter 13 amazon Web ServiCeS

158

Unfortunately, boot-time diagnostic messages are not well structured, so the parsing

must be somewhat ad hoc.

rsa = next(line

 for line in result.splitlines()

 if line.startswith('ssh-rsa'))

We look for the first line that starts with ssh-rsa. Now that we have the public key,

there are several things we can do with it. If we just want to run an SSH command line,

and the machine is not VPN-accessible-only, we will want to store the public IP in

known_hosts.

This avoids a Trust-on-First-Use (TOFU) situation: boto3 uses Certificate Authorities

to connect securely to AWS, and so the SSH key’s integrity is guaranteed. Especially for

cloud platforms, TOFU is a poor security model. Since it is so easy to create and destroy

machines, the lifetime of machines is sometimes measured in weeks or even days.

resource = boto3.resource('ec2')

instance = resource.Instance(sys.argv[1])

known_hosts = (f'{instance.public_dns_name},'

 f'{instance.public_ip_address} {rsa}')

with open(os.path.expanduser('~/.ssh/known_hosts'), 'a') as fp:

 fp.write(known_hosts)

13.2.6 Building Images
Building your own images can be useful. One reason to do it is to accelerate startup.

Instead of booting up a vanilla Linux distribution and then installing needed packages,

setting configuration, and so on, it is possible to do it once, store the AMI, and then

launch instances from this AMI.

Another reason to do it is to have known upgrade times; running apt-get update

&& apt-get upgrade means getting the latest packages at time of upgrade. Instead,

doing this in an AMI build allows knowing all machines are running from the same

AMI. Upgrades can be done by first replacing some machines with machines with the

new AMI, checking the status, and then replacing the rest. This technique, used by

Netflix among others, is called “immutable images.” While there are other approaches to

immutability, this is one of the first ones that was successfully deployed in production.

Chapter 13 amazon Web ServiCeS

159

One way to prepare machines is to use a configuration management system.

Both Ansible and Salt have a “local” mode that runs commands locally, instead of via a

server/client connection.

The steps are:

• Launching an EC2 machine with the right base image (for example,

vanilla CentOS).

• Retrieve the host key for securely connecting.

• Copy over Salt code.

• Copy over Salt configuration.

• Via SSH, run Salt on the EC2 machine.

• At the end, call client("ec2").create_image in order to save the

current disk contents as an AMI.

$ pex -o salt-call -c salt-call salt-ssh

$ scp -r salt-call salt-files $USER@$IP:/

$ ssh $USER@$IP /salt-call --local --file-root /salt-files

(botovenv)$ python

...

>>> client.create_image(....)

This approach means a simple script, running on a local machine or in a CI

environment, can generate an AMI from source code.

13.3 Simple Storage Service (S3)
The simple storage service (S3) is an object storage service. Objects, which are byte

streams, can be stored and retrieved. This can be used to store backups, compressed log

files, video files, and similar things.

S3 stores objects in buckets, by key (a string). Objects can be stored, retrieved, or

deleted. However, objects cannot be modified in place.

S3 buckets names must be globally unique, not just per account. This uniqueness

is often accomplished by adding the account holder’s domain name, for example,

large- videos.production.example.com.

Chapter 13 amazon Web ServiCeS

160

Buckets can be set to be publicly available, in which case objects can be retrieved by

accessing a URL composed of the bucket’s name and the object’s name. This allows S3

buckets, properly configured, to be static websites.

13.3.1 Managing Buckets
In general, bucket creation is a fairly rare operation. New buckets correspond to new

code flows, not code runs. This is partially because buckets need to have unique names.

However, it is sometimes useful to create buckets automatically, perhaps for many

parallel test environments.

response = client("s3").create_bucket(

 ACL='private',

 Bucket='my.unique.name.example.com',

)

There are other options, but those are usually not needed. Some of those have to

do with granting permissions on the bucket. In general, a better way to manage bucket

permissions is the way all permissions are managed: by attaching policies to roles or

IAM users.

In order to list possible keys, we can use this:

response = client("s3").list_objects(

 Bucket=bucket,

 MaxKeys=10,

 Marker=marker,

 Prefix=prefix,

)

The first two arguments are important; it is necessary to specify the bucket, and it is a

good idea to make sure that responses are of known maximum size.

The Prefix parameter is useful especially when we use the S3 bucket to simulate a

“file system.” For example, this is what S3 buckets that are served as websites usually look

like. When exporting CloudWatch logs to S3, it is possible to specify a prefix, exactly to

simulate a “file system.” While internally the bucket is still flat, we can use something like

Prefix="2018/12/04/" to get only the logs from December 4th, 2018.

Chapter 13 amazon Web ServiCeS

161

When a there are more objects that qualify than MaxKeys, the response will be

truncated. In that case, the IsTruncated field in the response will be True, and the

NextMarker field will be set. Sending another list_objects with the Marker set to the

returned NextMarker will retrieve the next MaxKeys objects. This allows pagination

through responses that are consistent even in the face of mutating buckets, in the limited

sense that we will get at least all objects that were not mutated while paginating.

In order to retrieve a single object, we use get_object:

response = boto3.client("s3").get_object(

 Bucket='string',

 Key='string',

)

value = response["Body"].read()

The value will be a bytes object.

Especially for small- to medium-sized objects, say up to several megabytes, this is a

way to allow simple retrieval of all data.

In order to push such objects into the bucket we can use this:

response = boto3.client("s3").put_object(

 Bucket=BUCKET,

 Key=some_key,

 Body=b'some content',

)

Again, this works well for the case where the body all fits in memory.

As we have alluded to earlier, when uploading or downloading larger files (for

example, videos or database dumps) we would like to be able to upload incrementally,

without keeping the whole file in memory at once.

The boto3 library exposes a high-level interface to such functionality using the

∗_fileobj methods.

For example, we can transfer a large video file using:

client = boto3.client('s3')

with open("meeting-recording.mp4", "rb") as fpin:

 client.upload_fileobj(

 fpin,

Chapter 13 amazon Web ServiCeS

162

 my_bucket,

 "meeting-recording.mp4"

)

We can also use similar functionality to download a large video file:

client = boto3.client('s3')

with open("meeting-recording.mp4", "wb") as fpout:

 client.upload_fileobj(

 fpin,

 my_bucket,

 "meeting-recording.mp4"

)

Finally, it is often the case that we would like objects to be transferred directly out of

S3 or into S3, without the data going through our custom code – but we do not want to

allow unauthenticated access.

For example, a continuous integration job might upload its artifacts to S3. We would

like to be able to download them through the CI web interface, but having the data pass

through the CI server is unpleasant – it means that this server now needs to handle

potentially larger files where people would care about transfer speeds.

S3 allows us to generate “pre-signed” URLs. These URLs can be given as links from

another web application, or sent via e-mail or any other methods, and allow time-

limited access to the S3 resource.

url = s3.generate_presigned_url(

 ClientMethod='get_object',

 Params={

 'Bucket': my_bucket,

 'Key': 'meeting-recording.avi'

 }

)

This URL can now be sent via e-mail to people who need to view the recording, and

they will be able to download the video and watch it. In this case, we saved ourselves any

need from running a web server.

Chapter 13 amazon Web ServiCeS

163

An even more interesting use case is allowing pre-signed uploads. This is especially

interesting because uploading files sometimes requires subtle interplays between the

web server and the web application server to allow large requests to be sent in.

Instead, uploading directly from the client to S3 allows us to remove all the

intermediaries. For example, this is useful for users who are using some document

sharing applications.

post = boto3.client("s3").generate_presigned_post(

 Bucket=my_bucket,

 Key='meeting-recording.avi',

)

post_url = post["url"]

post_fields = post["fields"]

We can use this URL from code with something like:

with open("meeting-recording.avi", "rb"):

 requests.post(post_url,

 post_fields,

 files=dict(file=file_contents))

This lets us upload the meeting recording locally, even if the meeting recording

device does not have S3 access credentials. It is also possible to limit the maximum size

of the files via generate_presigned_post, to limit the potential harm from an unknown

device uploading these files.

Note that pre-signed URLs can be used multiple times. It is possible to make a pre-

signed URL only valid for a limited time, to mitigate any risk of potentially mutating the

object after uploading. For example, if the duration is one second, we can avoid checking

the uploaded object until the second is done.

13.4 Summary
AWS is a popular Infrastructure-as-a-Service platform, which in general is used on a

pay- as- you-go basis. It is suitable to automation of infrastructure management tasks,

and boto3, maintained by AWS itself, is a powerful way to approach this automation.

Chapter 13 amazon Web ServiCeS

165
© Moshe Zadka 2019
M. Zadka, DevOps in Python, https://doi.org/10.1007/978-1-4842-4433-3

Index

A
Access keys, 152
Amazon machine

images (AMIs), 155, 157
Amazon Web Services (AWS)

access keys, 152
audit logs, 151
EC2 (see Elastic computing cloud (EC2))
region, 154
S3, 159, 161–163
security, 152–153

Anaconda, 5–6, 9
Ansible

become_method, 142–143
dynamic inventory, 144
hosts and roles, 141
installation, 139
interpolation, 142
inventory script, 140
lookup plugins, 145
parse function, 144
SSH communication, 139
YAML files, 140–141

assert keyword, 54
Authentication, 92–94
Auto-parsing, 77
AutoScaling group (ASG), 157
AWSRequest object, 93

B
botocore, 93
Buckets, 160
built-in tempfile module, 58
Bytes, 71
BytesIO, 148

C
Canonicalization, 92
Certificate signing

request (CSR), 109
Certification authorities (CA), 89
Character classes, 77
chmod method, 118
Client private/public keys, 112–114
Code module, 31–32
Console, 36
containers.run()

method, 149
Control characters, 71
CookieJar, 86
Create, Retrieve, Update, and Delete

(CRUD) model, 87
CSV format

csv.DictReader, 83
csv.reader, 83
csv.writer, 82

166

D
datetime object, 82
DevPI, 20–23
Docker

CI session, 147
dockerpy library, 147
fileobj parameter, 148
image management, 150
installation, 147

E
Elastic computing cloud (EC2)

AMIs, 155
building images, 158–159
logging, 157–158
regions, 154
run_instances method, 156
SSH keys, 155–156

Elastic Container Service (ECS) task, 152
Elliptic curve asymmetric cryptography, 113
Encoding, 39, 72, 80
error_lines, 63, 65

F
Fernet

AES-128, 95
encryption, 96
generate_key class method, 96
invalid decryption errors, 97
symmetric cryptography, 95

Files
encoding text, 39
important file, 42
NamedTemporaryFile, 43
UTF-8, 41
XCF internal format, 40

Filesystem in User SpacE (FUSE), 26
Filesystems, 58
Fingerprint, 112
functools.partial, 93

G
get method, 68
get_archive method, 149
get_pids, 66
git commits, 71
gpg-agent, 127

H
Hamcrest, 54
Hardware key management (HKM), 128
Hashing algorithms, 103
Helper method, 60
Host identity, 114
HTTPAdapter class, 91
HTTPBasicAuth instance, 92
HTTP security model, 89

I
Infrastructure as code, 151
Interactive console, 29–30
International standards organization

(ISO), 72
InventoryModule class, 144
ipykernel package, 36
IPython, 32–34

J, K, L
JavaScript object notation (JSON), 80

dumps function, 81
library, 80

INDEX

167

module, 81
null object, 81
serialization format, 80
unicode, 80

Jinja templates, 129
join method, 76
.json() method, 88
Jupyter lab, 34–35, 37–38

M
MaxKeys, 161
Mocks, 56
MultiFernet, 97
Mutual trust, 112

N
NamedTemporaryFile, 43
Native console, 29–31
Nested patterns, 79
Networking, 47–50

O
open_sftp method, 118
os module, 42
OS automation

files, 39–43
networking, 47–50
processes, 43–47

os.makedirs function, 42
os.path module, 42
os.path.get... functions, 43
os.rename Python

function, 42
os.system function, 44

P, Q
Packaging

DevPI, 20–23
Pex, 24–25
pip, 7–8
Pipenv, 18–20
poetry, 18
setup.py file, 11–13
Shiv, 26
Tox, 13–15, 17–18
wheels, 13
XAR, 26–27

Paramiko client, 116
passlib library, 102
built-in module pathlib, 59
pem file, 87
Personal package archives (PPA), 1
Pex, 24–25
Pillar, 127
Pipenv, 19–20
Poetry, 18–19
Popen, 44–45
ptpython tool, 32
Public SSH keys, 155
pull() and push() methods, 150
put_archive command, 149
py renderer, 131
PyNaCl

authentication, 98
box signs, 99
encode method, 98
public-key cryptography, 98, 99
signing key, 100
symmetric/asymmetric encryption, 97
verification key, 101–102

Python in Python (PyPy), 5

Index

168

Python, installing
Anaconda, 5–6
OS packages, 1–2
Pyenv, 2–3
PyPy, 5
sqlite, 4

R
Read-Eval-Print Loop (REPL), 29
Regression tests, 51
Regular expressions

capturing group, 78
grouping, 77
match method, 78
patterns, 76
repeat modifiers, 77
verbose mode, 79

Remote files, 118
download, 119
metadata management, 118–119
upload, 119

remove function, 134
Representational state transfer (REST), 87
request.get/request.post functions, 85
requests.Session(), 86
Root key, 89
rstrip method, 75
Running commands, 116–117

S
Shell-parsing/salt-parsing rules, 124
Salt environments, 129
Salt extensions

execution modules, 135
state modules, 132
third-party dependencies, 137
utility modules, 135–136

Salt-key command, 128
SaltStack

core.sls, 125
DNS services, 121
extensions (see Salt extensions)
formats, 129
priv field, 123
roster, 122–123
shell-parsing/salt-parsing

rules, 124
system configuration management

framework, 121
terminology, 126
usage, 122

seashore library, 65
Security

access key, configuration, 152
groups, 154
STS, 153

Self-synchronization, 72
send method, 48
send/recv methods, 117
Serverless, 152
Server name indication (SNI), 89
service.pem file, 110
session.headers, 86
Session object, 85
SFTPClient object, 118
Shiv, 26
Short-term tokens (STS), 153
shutil module, 43
Simple storage

service (S3), 159, 161–163
buckets management, 160
object storage service, 159

socket API, 48
SSH public key, 155–156
SSH security, 111–112

INDEX

169

ssl_version, 91
startswith/endswith

methods, 74
Strings, 73
strip/split methods, 75
struct module, 40
Stubs, 56
Subnet, 154
subprocess, 43–46
sudo boolean, 123

T
tempfile module, 43
Terminal, 36
test.collatz/test.fib functions, 124
Test driven development, 51
Testing

DevOps code, 56
fake system, 56–57
filesystem, 57–62
mocks, 56–57
networking, 67–70
process-manipulation code, 62–67
stubs, 56–57
unit (see Unit testing)

test.kwarg command, 124
Tox, 13–15, 17–18
Transport layer security (TLS)

CA certificate, 108
certificate authority, 105
certificate builder, 107
CSR, 109
hazmat layer, 106
PEM file format, 108, 110
plain-text communication, 105
validity range, 107

Trusted platform modules (TPM), 128
Trust On First Use (TOFU) model, 112,

157–158

U
Unicode, 72–73
Unit testing

API, 51
assert keyword, 54
assert_that functions, 54
bug, 55
contract of scale_one, 56
exact contract, 54
function, 52, 55
regression test, 52
test driven

development, 51
write_numbers, 53–54

unittest.mock library, 68
urllib3 library, 90
urlparse built-in library, 92
User-Agent variable, 86
UTF-8, 72

V, W
Virtual environments, 9–10
Virtual machines (VMs), 154
Virtual private cloud (VPC), 154

X
XAR (eXecutable ARchive), 26

Y, Z
YAML_ENCODE, 130

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Installing Python
	1.1 OS Packages
	1.2 Using Pyenv
	1.3 Building Python from Source
	1.4 PyPy
	1.5 Anaconda
	1.6 Summary

	Chapter 2: Packaging
	2.1 Pip
	2.2 Virtual Environments
	2.3 Setup and Wheels
	2.4 Tox
	2.5 Pipenv and Poetry
	2.5.1 Poetry
	2.5.2 Pipenv

	2.6 DevPI
	2.7 Pex and Shiv
	2.7.1 Pex
	2.7.2 Shiv

	2.8 XAR
	2.9 Summary

	Chapter 3: Interactive Usage
	3.1 Native Console
	3.2 The Code Module
	3.3 ptpython
	3.4 IPython
	3.5 Jupyter Lab
	3.6 Summary

	Chapter 4: OS Automation
	4.1 Files
	4.2 Processes
	4.3 Networking
	4.4 Summary

	Chapter 5: Testing
	5.1 Unit Testing
	5.2 Mocks, Stubs, and Fakes
	5.3 Testing Files
	5.4 Testing Processes
	5.5 Testing Networking
	5.6 Summary

	Chapter 6: Text Manipulation
	6.1 Bytes, Strings, and Unicode
	6.2 Strings
	6.3 Regular Expressions
	6.4 JSON
	6.5 CSV
	6.6 Summary

	Chapter 7: Requests
	7.1 Sessions
	7.2 REST
	7.3 Security
	7.4 Authentication
	7.5 Summary

	Chapter 8: Cryptography
	8.1 Fernet
	8.2 PyNaCl
	8.3 Passlib
	8.4 TLS Certificates
	8.5 Summary

	Chapter 9: Paramiko
	9.1 SSH Security
	9.2 Client Keys
	9.3 Host Identity
	9.4 Connecting
	9.5 Running Commands
	9.6 Emulating Shells
	9.7 Remote Files
	9.7.1 Metadata Management
	9.7.2 Upload
	9.7.3 Download

	9.8 Summary

	Chapter 10: Salt Stack
	10.1 Salt Basics
	10.2 Salt Concepts
	10.3 Salt Formats
	10.4 Salt Extensions
	10.4.1 States
	10.4.2 Execution
	10.4.3 Utility
	10.4.4 Extra Third-Party Dependencies

	10.5 Summary

	Chapter 11: Ansible
	11.1 Ansible Basics
	11.2 Ansible Concepts
	11.3 Ansible Extensions
	11.4 Summary

	Chapter 12: Docker
	12.1 Image Building
	12.2 Running
	12.3 Image Management
	12.4 Summary

	Chapter 13: Amazon Web Services
	13.1 Security
	13.1.1 Configuring Access Keys
	13.1.2 Creating Short-Term Tokens

	13.2 Elastic Computing Cloud (EC2)
	13.2.1 Regions
	13.2.2 Amazon Machine Images
	13.2.3 SSH Keys
	13.2.4 Bringing Up Machines
	13.2.5 Securely Logging In
	13.2.6 Building Images

	13.3 Simple Storage Service (S3)
	13.3.1 Managing Buckets

	13.4 Summary

	Index

