
Practical Guide
to Keras 

for 
Data Science

A STEP-BY-STEP GUIDE

@RAMCHANDRAPADWAL



Introduction ﻿to Keras
What is Keras?
Getting Started with Keras

Installing Keras and Dependencies
Importing Keras

Building a Simple Neural Network
Loading and Preprocessing Data
Designing the Neural Network Architecture
Compiling the Model
Training the Model
Evaluating the Model

Convolutional Neural Networks (CNNs) with Keras
Understanding CNNs
Building a CNN for Image Classification
Data Augmentation
Transfer Learning with Pretrained CNNs

Recurrent Neural Networks (RNNs) with Keras
Introduction to RNNs
Building an RNN for Text Generation
Handling Long Sequences with LSTM
Bidirectional RNNs

Fine-tuning and Hyperparameter Tuning
Fine-tuning a Keras Model
Hyperparameter Tuning with Grid Search
Randomized Search for Hyperparameter Optimization

Saving and Loading Keras Models
Saving and Loading Model Architecture
Saving and Loading Model Weights

Deploying Keras Models
Converting Keras Model to TensorFlow Lite
Serving Keras Model with Flask
Deploying Keras Model on Cloud Platforms

Conclusion

Table of Contents

@RAMCHANDRAPADWAL



Introduction to
Keras

CHAPTER N.1

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Keras is a high-level neural networks API, written in Python and
capable of running on top of various deep learning frameworks
such as TensorFlow, Theano, and CNTK. It was developed with
a focus on enabling fast experimentation and prototyping,
making it an excellent choice for data scientists and machine
learning practitioners. In this practical guide, we will explore
the essentials of Keras and how to leverage its capabilities for
data science tasks, including building neural networks for
various applications.

@RAMCHANDRAPADWAL



What is Keras?



CHAPTER N.2

@RAMCHANDRAPADWAL

A Step-by-Step Guide



Keras provides a user-friendly and intuitive interface for
building, training, and deploying deep learning models. It offers
both sequential and functional APIs, allowing users to create
simple feedforward networks or complex architectures with
shared layers, multiple inputs, and multiple outputs.

Keras abstracts away much of the complexity of working with
deep learning frameworks, making it easy for data scientists to
focus on designing and experimenting with their models. Under
the hood, Keras can use powerful backends like TensorFlow
to efficiently execute computations on CPUs and GPUs,
ensuring fast training and inference.



Getting Started
with 
Keras




CHAPTER N.3

@RAMCHANDRAPADWAL

A Step-by-Step Guide



Once Keras is installed, you can import it into your Python
script or notebook:

To begin using Keras, you'll need to install it along with its
backend, such as TensorFlow. Here's how you can install
Keras using pip:

3.1 Installing Keras and Dependencies

3.2 Importing Keras

@RAMCHANDRAPADWAL

This command will also install the default backend, which is
TensorFlow. If you want to use a different backend, you can
install it separately and configure Keras to use it.

With these imports, you can start building your neural network
models using Keras.



Building a Simple
Neural Network




CHAPTER N.4

A Step-by-Step Guide

@RAMCHANDRAPADWAL



One of the fundamental steps in any data science task is
loading and preprocessing the data. Keras provides various
utilities to facilitate this process. Suppose we have a dataset
in CSV format containing features and labels:

4.1 Loading and Preprocessing Data

@RAMCHANDRAPADWAL

For a simple feedforward neural network, we use the
Sequential API in Keras:

4.2 Designing the Neural Network Architecture

In this example, we create a neural network with two hidden
layers and an output layer. The first hidden layer has 64 units
and uses the ReLU activation function, while the second
hidden layer has 32 units, also using ReLU. The output layer
has as many units as the number of classes in the
classification task and uses the softmax activation function for
multi-class classification.



Here, X_train and y_train are the training data and labels,
respectively. The epochs parameter determines how many
times the model will iterate over the entire training dataset.
The batch_size parameter specifies how many samples are
used in each iteration. Validation data can also be provided to
monitor the model's performance during training.

After designing the model, we need to compile it with an
optimizer, loss function, and optional evaluation metrics:

4.3 Compiling the Model

@RAMCHANDRAPADWAL

To train the model, we use the fit() function:

4.4 Training the Model

Once the model is trained, we can evaluate its performance
on the test set:

4.5 Evaluating the Model

This will give us the loss and accuracy of the model on the
test data.



Convolutional
Neural Networks
(CNNs) with Keras




CHAPTER N.5

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Convolutional Neural Networks (CNNs) are a powerful class of
neural networks commonly used for image recognition tasks.
They are designed to automatically and adaptively learn
spatial hierarchies of features from input images.

5.1 Understanding CNNs

@RAMCHANDRAPADWAL

Let's build a simple CNN for image classification using the
famous MNIST dataset:

5.2 Building a CNN for Image Classification

In this example, we build a CNN with one convolutional layer
followed by max-pooling, a dense hidden layer, and the output
layer. The model is trained on the MNIST dataset for 10
epochs.



Data augmentation is a technique used to artificially increase
the size of the training dataset by applying random
transformations to the existing data. This can improve the
generalization and performance of the CNN. Keras provides
built-in support for data augmentation:

5.3 Data Augmentation

@RAMCHANDRAPADWAL

Transfer learning is a technique where a pre-trained model is
used as a starting point for a new task. Fine-tuning the model
on the new task often requires fewer training iterations and can
lead to better performance. Keras provides access to various
pre-trained CNN architectures, such as VGG16 and ResNet:

5.4 Transfer Learning with Pre Trained CNNs



Recurrent Neural
Networks 

(RNNs) with Keras



CHAPTER N.6

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Recurrent Neural Networks (RNNs) are a class of neural
networks designed to handle sequential data, making them
suitable for tasks such as natural language processing, time
series analysis, and speech recognition. RNNs have a unique
architecture that allows them to maintain a hidden state while
processing each input in the sequence.

6.1 Introduction to RNNs

@RAMCHANDRAPADWAL

Let's build an RNN for text generation using a simple character-
level language model. We'll train the model on a corpus of text
data and use it to generate new text:

6.2 Building an RNN for Text Generation



In some cases, RNNs may have difficulty learning long-range
dependencies in sequences. Long Short-Term Memory (LSTM)
units are a variant of RNNs designed to address this issue.
They have the ability to learn and retain information for longer
periods, making them suitable for tasks involving longer
sequences.
To use LSTM in Keras, simply replace the standard RNN layer
with LSTM:

@RAMCHANDRAPADWAL

After training, we can use the model to generate new text:

6.3 Handling Long Sequences with LSTM



6.4 Bidirectional RNNs

@RAMCHANDRAPADWAL

Bidirectional RNNs are another variation of RNNs that process
the input sequence in both forward and backward directions.
This allows the model to capture information from past and
future inputs simultaneously and can lead to better
performance in certain tasks.
To create a bidirectional RNN in Keras, wrap the RNN layer with
the Bidirectional wrapper:



Fine-tuning 
and

Hyperparameter
Tuning

CHAPTER N.7

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Fine-tuning refers to the process of taking a pre-trained model
and continuing its training on a new dataset or task. This is
often done to adapt a model trained on a large dataset to a
specific domain or improve its performance on a related task.
For example, let's assume we have a pre-trained CNN model
on a large image classification dataset and want to fine-tune it
on a new dataset specific to our domain:

7.1 Fine-tuning a Keras Model

@RAMCHANDRAPADWAL



Hyperparameter tuning is a crucial step to optimize a model's
performance. Grid search is a simple and commonly used
method to search for the best combination of
hyperparameters.

Keras models can be integrated with scikit-learn's
GridSearchCV for hyperparameter tuning:

7.2 Hyperparameter Tuning with Grid Search

@RAMCHANDRAPADWAL



Randomized search is another method for hyperparameter
optimization that randomly samples a predefined number of
hyperparameter combinations from the search space. It can
be more efficient than grid search when dealing with a large
number of hyperparameters.
To use randomized search with Keras models, you can follow
a similar approach as grid search but use
RandomizedSearchCV from scikit-learn instead:

7.3 Randomized Search for Hyperparameter
Optimization

@RAMCHANDRAPADWAL



Saving and
Loading Keras

Models



CHAPTER N.8

A Step-by-Step Guide

@RAMCHANDRAPADWAL



After training a Keras model, you may want to save the
architecture to reproduce it later or share it with others. Keras
allows you to save the model architecture as a JSON or YAML
file:

8.1 Saving and Loading Model Architecture

@RAMCHANDRAPADWAL

To load the saved model architecture:

Once a model is trained, you can save its learned weights to a
file and later load them back to the model:

8.2 Saving and Loading Model Weights

To load the saved weights:



Deploying 
Keras Models




CHAPTER N.9

A Step-by-Step Guide

@RAMCHANDRAPADWAL



TensorFlow Lite is a lightweight version of TensorFlow
designed for mobile and embedded devices. To convert a
Keras model to TensorFlow Lite, use the TFLiteConverter:

9.1 Converting Keras Model to TensorFlow Lite

@RAMCHANDRAPADWAL

9.2 Serving Keras Model with Flask
Flask is a popular web framework for building APIs. You can
serve your trained Keras model using Flask to make
predictions over HTTP:



To deploy your Keras model on cloud platforms, you can use
services like TensorFlow Serving on Google Cloud or AWS
SageMaker, which allow you to serve your model at scale and
integrate it with other cloud-based applications.

9.3 Deploying Keras Model on Cloud Platforms



Conclusion

@RAMCHANDRAPADWAL

In this practical guide to Keras for data science, we covered
essential topics for building and deploying neural network
models with Keras. We learned how to build simple
feedforward networks, CNNs, and RNNs, and how to fine-tune
and optimize their hyperparameters. Additionally, we explored
saving and loading models, deploying models with Flask, and
converting models to TensorFlow Lite for mobile and
embedded deployment.

Keras provides a user-friendly interface and is a powerful tool
for data scientists to experiment with and deploy deep
learning models efficiently. By leveraging the knowledge
gained from this guide, you can tackle various data science
challenges and build cutting-edge machine learning solutions.
Happy coding and happy learning!


