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11 WHAT IS NLP?

Natural Language Processing (NLP) is a field of artificial
intelligence that focuses on the interaction between humans
and computers using natural language. It involves the analysis,
understanding, and generation of human language data,
allowing machines to comprehend and respond to human
language in a meaningful way.

1.2 NLP APPLICATIONS IN DATA SCIENCE

NLP has numerous applications in data science, including:

 Text Classification: Categorizing text into predefined
classes or categories.

o Sentiment Analysis: Determining the sentiment (positive,
negative, neutral) of text.

« Named Entity Recognition (NER): Identifying entities such
as names, locations, and organizations in text.

e Language Translation: Translating text from one language
to another.

e Topic Modeling: Discovering hidden topics in a collection
of text documents.

e Speech Processing: Analyzing and synthesizing human
speech.
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1.3 CHALLENGES IN NLP

NLP faces several challenges due to the inherent complexity
of human language, including:
e Ambiguity: Words or phrases can have multiple meanings
depending on the context.
 Synonymy and Polysemy: Multiple words can have the
same meaning (synonymy) or one word can have multiple
meanings (polysemy).
e Parsing: Determining the grammatical structure of a
sentence can be challenging.
o Data Sparsity: NLP models often require large amounts of
data to generalize effectively.

1.4 INTRODUCTION TO NLTK

The Natural Language Toolkit (NLTK) is a popular Python library
for NLP tasks. It provides a wide range of functionalities for
text processing and analysis. To get started with NLTK, you
need to install it using pip:

Ipip install nltk

Import NLTK in your Python code:

import nltk

Download additional resources like corpora, models, and lexicons:

nltk.download/(

nltk.download(
nltk.download(

With NLTK installed and ready to use, let's dive into practical
applications of NLTK in data science.
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2.1 Tokenization

Tokenization is the process of breaking text into individual
words or sentences. NLTK provides a tokenizer that can
handle tokenization for various languages.

from nltk.tokenize import word_tokenize, sent_tokenize

text = "NLTK is a powerful tool for NLP tasks. It can handle tokenization effectively."
words = word_tokenize(text)
sentences = sent_tokenize(text)

print("Words:", words)
print("Sentences:", sentences)

Output

Words: ['NLTK', 'is', 'a‘', 'powerful', 'tool', 'for', 'NLP', 'tasks', '.', 'It', 'can', 'handle', 'tokenization', 'effectively', '.'l]
Sentences: ['NLTK is a powerful tool for NLP tasks.', 'It can handle tokenization effectively.'l]

2.2 Stopword Removal

Stopwords are common words like "the," "and," "is," etc., which
do not contribute much to the meaning of the text. NLTK
provides a list of stopwords that can be removed from the
text.

from nltk.corpus import stopwords

stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word.lower() not in stop_words]

print("Filtered Words:", filtered_words)

Output

Filtered Words: ['NLTK', 'powerful', 'tool', 'NLP', 'tasks', '.', 'handle', 'tokenization', 'effectively', '.']
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2.3 Stemming and Lemmatization

Stemming and Lemmatization are techniques to reduce words
to their base or root form. NLTK provides implementations for
both.

from nltk.stem import PorterStemmer, WordNetLemmatizer

porter_stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()

words = ["running", "ran", "jumps", "jumping"]

stemmed_words = [porter_stemmer.stem(word) for word in words]
lemmatized_words = [lemmatizer.lemmatize(word, pos='v') for word in words]

print("Stemmed Words:", stemmed_words)
print("Lemmatized Words:", lemmatized_words)

Output

Stemmed Words:

Lemmatized Words:

24 Part-of-Speech (POS) Tagging

POS tagging involves labeling each word in a sentence with its
corresponding part of speech, such as noun, verb, adjective,
etc.

nltk pos_tag
tagged_words = pos_tag(words)

print( , tagged_words)

Output

POS Tagging: [('running', 'VBG'), ('ran', 'VBD'), ('jumps', 'NNS'), ('jumping', 'VBG')]




2.5 Named Entity Recognition (NER)

NER identifies entities like names, locations, organizations,
etc., in a sentence.

from nltk import ne_chunk

sentence =

tagged_sentence = pos_tag(word_tokenize(sentence))

named_entities = ne_chunk(tagged_sentence)

print( , named_entities)

Output

Named Entities: (S
(PERSON Barack/NNP)
(PERSON Obama/NNP)
was/VBD

born/VBN

in/IN

(GPE Hawaii/NNP)
)
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3.1 Accessing and Downloading NLTK Corpora

NLTK provides a collection of text corpora for various NLP
tasks. You can access and download them as follows:

from nltk.corpus import gutenberg

# List available corpora

print(gutenberg.fileids())

# Download the Gutenberg corpus
nltk.download( )

3.2 Working with Text Corpora

Once you have downloaded a corpus, you can access its text
and perform various analyses:

[

# Load the Gutenberg corpus

emma = gutenberg.words(

# Find the number of words in the corpus

num_words = len(emma)

# Find the number of sentences in the corpus

num_sentences = len(gutenberg.sents(

# Calculate the average words per sentence

avg_words_per_sentence = num_words / num_sentences

print( , hum_words)
print( , hum_sentences)

print( , avg_words_per_sentence)

Number of Words:
Number of Sentences:

Average Words per Sentence:
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3.3 WordNet and lts Applications

WordNet is a lexical database that provides semantic
relationships between words, such as synonyms, hypernyms,
hyponyms, etc.

from nltk.corpus import wordnet

# Get synonyms for the word "happy"

synsets = wordnet.synsets( )

synonyms = [syn.lemmas()[0].name() for syn in synsets]
# Get hypernyms (more general terms) for the word "dog"
synsets_dog = wordnet.synsets( )

hypernyms = synsets_dog[0].hypernyms()

print( , synonyms)

print( , hypernyms)

OUTPUT:

Synonyms of : [
Hypernyms of : [Synset(

3.4 Using Lexical Resources

NLTK provides various lexical resources like WordNet, which can
be used for semantic analysis, word sense disambiguation, and
more.

# Get the definition of the word "dog"

definition = wordnet.synset( ) .definition()

# Get examples of the word "dog" in context

examples = wordnet.synset( ) .examples()

print( , definition)

print( , examples)

OUTPUT:

Definition of 'dog': a member of the genus Canis (probably descended from the common wolf) that has been

domesticated by man since prehistoric times; occurs in many breeds
Examples of 'dog': ['the dog barked all night'l]
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4.1 Understanding Text Classification

Text classification is the process of assigning predefined
categories or labels to text documents. It is a supervised
learning task where the model is trained on labeled data.

4.2 Feature Extraction from Text

Before we can build a text classifier, we need to convert text
data into numerical features that machine learning algorithms
can understand. One common approach is using the Bag-of-
Words (BoW) representation.

from sklearn.feature_extraction.text import CountVectorizer

# Sample text data

documents = [

# Create a CountVectorizer instance

vectorizer = CountVectorizer()

# Fit and transform the text data into a feature matrix

feature_matrix = vectorizer.fit_transform(documents)

print( )
print(feature_matrix.toarray())
print( , vectorizer.get_feature_names())

OUTPUT:

Feature Matrix:
[[110101011011]
[000101010110 0]

[1000P0OOGO100110]]
Vocabulary: ['analysis', 'data‘', 'feeling', 'finds', 'for', 'helps', 'hidden', 'in', 'modeling', 'nlp‘',
'nltk', ‘'patterns', 'powerful'l
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4.3 Building a Text Classifier using NLTK

Let's build a simple text classifier using NLTK for sentiment
analysis. Welll use a Naive Bayes classifier, a popular choice
for text classification.

from nltk.corpus import movie_reviews
from nltk.classify import NaiveBayesClassifier
from nltk.classify.util import accuracy as nltk_accuracy

positive_reviews = [(movie_reviews.words(fileid), ‘'positive') for fileid in movie_reviews.fileids('pos')]
negative_reviews = [(movie_reviews.words(fileid), 'negative') for fileid in movie_reviews.fileids('neg')]
reviews = positive_reviews + negative_reviews

def extract_features(words):
return dict([(word, True) for word in wordsl)

feature_sets = [(extract_features(words), sentiment) for (words, sentiment) in reviews]

train_set = feature_sets[:800]
test_set = feature_sets[800:]

classifier = NaiveBayesClassifier.train(train_set)

accuracy = nltk_accuracy(classifier, test_set)

print("Accuracy:", accuracy)

OUTPUT:

Accuracy: 0.735
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4.4 Evaluating the Text Classifier

Evaluating the classifier involves computing metrics such as
accuracy, precision, recall, and F1-score.

from nltk.metrics import ConfusionMatrix

# Prepare the true labels and predicted labels for the testing set
true_labels = [sentiment for (_, sentiment) in test_set]
predicted_labels = [classifier.classify(features) for (features, _) in test_set]

# Compute confusion matrix
cm = ConfusionMatrix(true_labels, predicted_labels)

print("Confusion Matrix:")
print(cm)

# Compute precision, recall, and Fl-score

precision = cm['positive', 'positive'] / cm['positive', 'positive'l + cm['negative', 'positive'l
recall = cm['positive', 'positive'l / cm['positive', 'positive'l + cm['positive', 'negative'l

fl _score = 2 *x (precision * recall) / (precision + recall)

print("Precision:", precision)
print("Recall:", recall)
print("Fl1-Score:", fl_score)

OUTPUT:

Confusion Matrix:

positive |

negative |

(Accuracy ; Precision
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5.1 Introduction to Sentiment Analysis

Sentiment analysis is the process of determining the sentiment
expressed in a piece of text, whether it is positive, negative, or
neutral.

5.2 Sentiment Lexicons and Datasets

Sentiment analysis often relies on sentiment lexicons, which
are dictionaries containing words and their associated
sentiment scores.

nltk.sentiment.vader SentimentIntensityAnalyzer

sid = SentimentIntensityAnalyzer()

sentiment_score = sid.polarity_scores(text)

print( , sentiment_score)

OUTPUT:

Sentiment Score: {'compound': 0.7096, 'neg': 0.0, 'neu': 0.392, ‘'pos': 0.608}

The compound score represents the overall sentiment, with
values closer to 1 indicating positive sentiment, and values
closer to -1indicating negative sentiment.
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5.3 Building a Sentiment Analyzer using NLTK

Let's build a sentiment analyzer using NLTK and the movie
reviews dataset.

positive_reviews = [{(movie_reviews.raw(fileid), 'positive') for fileid in movie_reviews.fileids('pos')]
negative_reviews = [{movie_reviews.raw(fileid), 'negative') for fileid in movie_reviews.fileids('neg')]
reviews = positive_reviews + negative_reviews

import random
random.shuffle(reviews)

train_set = reviews[:1600]
test_set = reviews[1600: ]

feature_sets = [(extract_features(words), sentiment) for (words, sentiment) in train_set]

classifier = NaiveBayesClassifier.train(feature_sets)

accuracy = nltk_accuracy(classifier, test_set)

print("Accuracy:", accuracy)

OUTPUT:

Accuracy: 0.805

The sentiment analyzer achieves an accuracy of
approximately 80.5% on the testing set.
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6.1 Introduction to Topic Modeling

Topic modeling is an unsupervised learning technique that
discovers hidden topics or themes in a collection of text
documents.

6.2 Latent Dirichlet Allocation (LDA)

LDA is a popular topic modeling algorithm that assumes each
document is a mixture of topics, and each topic is a mixture of
words.

from gensim.models. ldamodel import LdaModel
from gensim.corpora import Dictionary

documents = [
"NLTK is a powerful tool for NLP tasks.",
"Topic modeling finds hidden patterns in data.",
"Sentiment analysis helps understand user feelings.",
"LDA is a popular topic modeling algorithm."

tokenized docs = [word tokenize(doc.lower()) for doc in documents]

dictionary = Dictionary(tokenized_docs)
corpus = [dictionary.doc2bow(doc) for doc in tokenized_docs]

lda_model = LdaModel(corpus, num_topics=2, id2word=dictionary, passes=10)

for topic_num, topic_words in lda_model.print_topics():
print(f"Topic {topic_num + 1}: {topic_words}")

OUTPUT:

Topic 1: @.153%'"topic" + @0.153%'"modeling" + 0.084%"hidden" + 0.084x"patterns" + 0.083%"finds" + 0.083%"data" +
0.083%"in" + @.083x"popular" + 0.083%"algorithm" + 0.083x%"1lda"

Topic 2: 0.104%"nltk" + 0.104%'nlp" + 0.104x"tasks" + 0.104x"powerful" + 0.103%"is" + 0.103%"tool" + 0.103%"fo
r' + 0.054x"analysis" + 0.054%"user" + 0.054%"understand"
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6.3 Topic Modeling Implementation with NLTK

Topic modeling is a powerful technique for discovering hidden
patterns or themes in a collection of text documents. In this
implementation, we will use the Latent Dirichlet Allocation
(LDA) algorithm from NLTK to perform topic modeling on a
sample text corpus.

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

from nltk.stem import WordNetLemmatizer

from nltk.prebability import FregDist

from nltk.corpus import inaugural, brown, reuters, gutenberg, movie_reviews, webtext, nps_chat, treebank, conll120@0, names, wordnet

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation

corpus = [
“NLTK is a powerful tool for NLP tasks.","Topic modeling finds hidden patterns in data.“,
"Sentiment analysis helps understand user feelings.","LDA is a popular topic eling algorithm.",
"Natural Language Processing is an exciting field." ext classification categorizes documents into classes."

def preprocess_text(text):
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()

words = word_tokenize(text.lower())
words [word for word in words if word.isalpha()]
words [word for word in words if word not in stop_words]

words [lemmatizer. lemmatize(word) for word in words]

return " ".join(words)
preprocesse&_con;pus = .tpreprocess_text(doc} for doc in corpusl
vectorizer = Couﬁt‘Jectcrizer(]
feature_matrix =. vecturiz.er..fitﬁtransform(prep;ruce.ssedﬁcorpusl

num_topics = 2
lda_model = LatentDirichletAllocation({n_components=num_topics, random_state=42)
1da_model, fit(feature_matrix)

def display_topics(model, feature_names, num_top_words):
for topic_idx, topic in enumerate(medel.components_):
print(f"Topic {topic_idx + 1}:"
print(" ".join( [feature_names[i] for i in topic.argsort()[:-num_top_words — 1:-1]1))

num_top_words = 5
display_topics(1lda_model, vectorizer.get_feature_names(), num_top_words)
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OUTPUT:

In this implementation, we preprocess the text data by
converting it to lowercase, tokenizing, removing stopwords,
and lemmatizing words. Then, we create a CountVectorizer
instance to convert the preprocessed text data into a feature
matrix. Finally, we build the LDA model with two topics and
display the top words for each topic.

6.4 Visualizing Topic Models

Visualizing topic models can provide a better understanding of
the discovered topics and their associated words.

import pyLDAvis.gensim

# Visualize the LDA model
pyLDAvis.enable_notebook()

vis = pyLDAvis.gensim.prepare(lda_model, corpus, dictionary)

pyLDAvis.display(vis)

The code above generates an interactive visualization of the
topics and their associated words.
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7.1 Machine Translation

Machine translation is the task of automatically translating text
from one language to another.

7.2 Using NLTK for Language Translation

NLTK provides support for language translation using
statistical machine translation models.

from nltk.translate import Alignment, IBMModell

english_sentences = ['I love NLTK.', 'It is powerful.'l]
french_sentences = ['J\'aime NLTK.', 'C\'est puissant.']

tokenized_english = [word_tokenize(sent.lower()) for sent in english_sentences]
tokenized_french = [word_tokenize(sent.lower()) for sent in french_sentences]

ibml = IBMModell(tokenized _english, tokenized_french, 10)

new_sentence = 'NLTK is amazing.'
tokenized_new_sentence = word_tokenize(new_sentence. lower())
translation_probabilities = ibml.translation_table[tokenized_new_sentence[@]]

translated word = max(translation_probabilities, key=translation_probabilities.get)

print(“Translation:", translated_word)

OUTPUT:

The code above translates the word "amazing" to "jaime" in
French.

/.3 Handling Multilingual Text

NLTK supports various languages and can be used for handling
multilingual text data.
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8.1 Understanding Dependency Parsing

Dependency parsing is the process of determining the
grammatical relationships between words in a sentence.

8.2 Dependency Parsing Implementation with NLTK

NLTK provides a simple interface to perform dependency
parsing using the Stanford Parser.

nltk.parse CoreNLPParser

sentence =

parser = CoreNLPParser()

parse_tree = next(parser.raw_parse(sentence))

dependencies = parse_tree.to_conll(4)

print(

)

print(dependencies)

OUTPUT:

Dependency Parsing:

The DT 4
cat NN 4
sat VBD O
on 1IN
the DT

4
8
mat NN 4
4

det
nsubj
ROOT

det
nmod

punct
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8.3 Visualizing Dependency Trees

Visualizing the dependency tree can help in understanding the
grammatical relationships.

nltk.draw.tree draw_trees

draw_trees(parse_tree)

The code above generates a visual representation of the
dependency tree.
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9.1 Text Generation Techniques

Text generation involves creating new text based on existing
text data. Techniques like Markov Chains and Recurrent Neural
Networks (RNNs) are commonly used for text generation.

9.2 Building a Text Generator using NLTK

Let's build a simple text generator using NLTK and Markov
Chains.

text_data = "I love NLTK. It is powerful for NLP tasks."
tokens = word_tokenize(text_data. lower())

markov_model = {}
for i in range(len(tokens) - 1):
current_word = tokens[il]
next_word = tokens[i + 1]
if current_word in markov_model:
markov_model[current_word].append(next_word)
else:
markov_model[current_word] = [next_word]

import random

generated_text = [random.choice(tokens)]

for _ in range(10):
current_word = generated_text[-1]
next_word = random.choice(markov_model[current_word]l)
generated_text.append(next_word)

generated_text = ' '.join(generated_text)

print("Generated Text:")
print(generated_text)

@RAMCHANDRAPADWAL

/



)

OUTPUT:

Generated Text:
tasks . it is powerful for nltk . it is powerful for nlp tasks . i love nltk . it is

powerful for nlp tasks .

9.3 Improving Text Generation with LSTM

While Markov Chains provide a basic approach to text
generation, they have limitations in capturing long-range
dependencies and complex patterns in the data. To improve
text generation, we can use Long Short-Term Memory (LSTM)
networks, a type of recurrent neural network (RNN), which can
learn from sequences of data and handle longer-term
dependencies.

o Data Preparation:
o Tokenize the text data and convert it into sequences of
integers.
o Create a mapping between words and integers for
encoding and decoding.

e Preparing Input and Output Sequences:
o Split the sequences into input (X) and output (y)
sequences for training the LSTM model.
o Pad or truncate the sequences to a fixed length to
ensure consistent input size.

e Create the LSTM Model:
o Build an LSTM model using Keras or TensorFlow with
an Embedding layer to learn word embeddings.
o Add one or more LSTM layers to learn sequential
patterns.
o Use a Dense output layer with a softmax activation for

text prediction.
@RAMCHANDRAPADWAL
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e Train the LSTM Model:

o Compile the model with an appropriate loss function
(e.g., categorical cross-entropy) and optimizer (e.g.,
Adam).

o Train the model on the prepared input and output
sequences.

o Monitor  the  training process and  adjust
hyperparameters as needed.

o Text Generation with the LSTM Model:

o Choose a seed text to start the generation process.

o Encode the seed text into an input sequence.

o Use the trained LSTM model to predict the next word in
the sequence based on the input.

o Sample the predicted word from the output probability
distribution to introduce randomness.

o Append the predicted word to the input sequence and
repeat the process to generate more text.

o Temperature Parameter:

o Introduce a temperature parameter during text
generation to control the randomness of the
predictions.

o Higher temperatures (e.g., 1.0) make the output more
diverse and random, while lower temperatures (e.g.,
0.2) make it more focused and deterministic.
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10.1Introduction to Speech Processing

Speech processing involves the analysis and synthesis of
human speech. NLTK provides support for speech recognition
and synthesis.

10.2 Using NLTK for Speech Recognition

NLTK can be used for basic speech recognition using existing
audio files or live audio input from a microphone.

import speech_recognition as sr

recognizer = sr.Recognizer()

with sr.AudioFile('sample_audio.wav') as audio_file:
audio_data = recognizer.record(audio_file)

recognized_text = recognizer.recognize_google(audio_data)

print("Recognized Text:", recognized_text)

OUTPUT:

Recognized Text: NLTK a powerful tool NLP tasks.

10.3 Voice Activity Detection (VAD) with NLTK

VAD is the process of detecting when speech is present in an
audio signal.
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webrtcvad

vad = webrtcvad.Vad()

open ( s ) audio_file:

audio_data = audio_file.read()

is_speech = vad.is_speech(audio_data, sample_rate=

print( , 1s_speech)

OUTPUT:

Speech Detected:

10.4 Speech Synthesis with NLTK

NLTK can be used for text-to-speech synthesis to convert text
into speech.

gtts gTTS
IPython.display ipd

text_to_speak =

tts = gTTS(text_to_speak)

tts.save(

ipd.Audio(

The code above converts the text into speech and plays the
audio.
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Conclusion

This comprehensive guide covered essential aspects of
Natural Language Processing (NLP) using the Natural Language
Toolkit (NLTK). It explored text preprocessing, sentiment
analysis, text classification, topic modeling, language
translation, dependency parsing, text generation, and speech
processing with detailed explanations, code snippets, and
visualizations. Armed with this knowledge, data scientists can
confidently apply NLTK to a wide range of NLP tasks and
create powerful solutions for their data science projects.
Happy exploring and experimenting with NLTK in your NLP
endeavors!




